Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Alon Rosen:

TR20-044 | 8th April 2020
Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon Rosen, Vinod Vaikuntanathan, Prashant Vasudevan

Cryptography from Information Loss

Revisions: 1

Reductions between problems, the mainstay of theoretical computer science, efficiently map an instance of one problem to an instance of another in such a way that solving the latter allows solving the former. The subject of this work is ``lossy'' reductions, where the reduction loses some information about the input ... more >>>

TR19-074 | 22nd May 2019
Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, Guy Rothblum

Finding a Nash Equilibrium Is No Easier Than Breaking Fiat-Shamir

The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography.

We show that ... more >>>

TR17-113 | 1st July 2017
Andrej Bogdanov, Alon Rosen

Pseudorandom Functions: Three Decades Later

In 1984, Goldreich, Goldwasser and Micali formalized the concept of pseudorandom functions and proposed a construction based on any length-doubling pseudorandom generator. Since then, pseudorandom functions have turned out to be an extremely influential abstraction, with applications ranging from message authentication to barriers in proving computational complexity lower bounds.

In ... more >>>

TR17-039 | 28th February 2017
Marshall Ball, Alon Rosen, Manuel Sabin, Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

We present functions that can be computed in some fixed polynomial time but are hard on average for any algorithm that runs in slightly smaller time, assuming widely-conjectured worst-case hardness for problems from the study of fine-grained complexity. Unconditional constructions of such functions are known from before (Goldmann et al., ... more >>>

TR16-092 | 3rd June 2016
Gilad Asharov, Alon Rosen, Gil Segev

Indistinguishability Obfuscation Does Not Reduce to Structured Languages

Revisions: 1

We prove that indistinguishability obfuscation (iO) and one-way functions do not naturally reduce to any language within $NP \cap coNP$. This is proved within the framework introduced by Asharov and Segev (FOCS '15) that captures the vast majority of techniques that have been used so far in iO-based constructions.

Our ... more >>>

TR16-059 | 14th April 2016
Alon Rosen, Gil Segev, Ido Shahaf

Can PPAD Hardness be Based on Standard Cryptographic Assumptions?

Revisions: 1

We consider the question of whether average-case PPAD hardness can be based on standard cryptographic assumptions, such as the existence of one-way functions or public-key encryption. This question is particularly well-motivated in light of new devastating attacks on obfuscation candidates and their underlying building blocks, which are currently the only ... more >>>

TR15-008 | 14th January 2015
Igor Carboni Oliveira, Siyao Guo, Tal Malkin, Alon Rosen

The Power of Negations in Cryptography

Revisions: 1

The study of monotonicity and negation complexity for Boolean functions has been prevalent in complexity theory as well as in computational learning theory, but little attention has been given to it in the cryptographic context. Recently, Goldreich and Izsak (2012) have initiated a study of whether cryptographic primitives can be ... more >>>

TR15-001 | 2nd January 2015
Nir Bitansky, Omer Paneth, Alon Rosen

On the Cryptographic Hardness of Finding a Nash Equilibrium

Revisions: 1

We prove that finding a Nash equilibrium of a game is hard, assuming the existence of indistinguishability obfuscation and injective one-way functions with sub-exponential hardness. We do so by showing how these cryptographic primitives give rise to a hard computational problem that lies in the complexity class PPAD, for which ... more >>>

TR14-033 | 10th March 2014
Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, Alon Rosen

Candidate Weak Pseudorandom Functions in $\mathrm{AC}0 \circ \mathrm{MOD}2$

Revisions: 1

Pseudorandom functions (PRFs) play a fundamental role in symmetric-key cryptography. However, they are inherently complex and cannot be implemented in the class $\mathrm{AC}^0( \mathrm{MOD}_2)$. Weak pseudorandom functions (weak PRFs) do not suffer from this complexity limitation, yet they suffice for many cryptographic applications. We study the minimal complexity requirements for ... more >>>

TR11-126 | 17th September 2011
Benny Applebaum, Andrej Bogdanov, Alon Rosen

A Dichotomy for Local Small-Bias Generators

We consider pseudorandom generators in which each output bit depends on a constant number of input bits. Such generators have appealingly simple structure: they can be described by a sparse input-output dependency graph and a small predicate that is applied at each output. Following the works of Cryan and Miltersen ... more >>>

TR11-012 | 2nd February 2011
Andrej Bogdanov, Alon Rosen

Input locality and hardness amplification

We establish new hardness amplification results for one-way functions in which each input bit influences only a small number of output bits (a.k.a. input-local functions). Our transformations differ from previous ones in that they approximately preserve input locality and at the same time retain the input size of the original ... more >>>

TR06-147 | 27th November 2006
Chris Peikert, Alon Rosen

Lattices that Admit Logarithmic Worst-Case to Average-Case Connection Factors

Revisions: 1

We demonstrate an \emph{average-case} problem which is as hard as
finding $\gamma(n)$-approximate shortest vectors in certain
$n$-dimensional lattices in the \emph{worst case}, where $\gamma(n)
= O(\sqrt{\log n})$. The previously best known factor for any class
of lattices was $\gamma(n) = \tilde{O}(n)$.

To obtain our ... more >>>

TR05-158 | 12th December 2005
Chris Peikert, Alon Rosen

Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices

The generalized knapsack function is defined as $f_{\a}(\x) = \sum_i
a_i \cdot x_i$, where $\a = (a_1, \ldots, a_m)$ consists of $m$
elements from some ring $R$, and $\x = (x_1, \ldots, x_m)$ consists
of $m$ coefficients from a specified subset $S \subseteq R$.
Micciancio ... more >>>

TR03-060 | 7th September 2003
Danny Harnik, Moni Naor, Omer Reingold, Alon Rosen

Completeness in Two-Party Secure Computation - A Computational View

A Secure Function Evaluation (SFE) of a two-variable function f(.,.) is a protocol that allows two parties with inputs x and y to evaluate
f(x,y) in a manner where neither party learns ``more than is necessary". A rich body of work deals with the study of completeness for secure ... more >>>

TR01-064 | 10th September 2001
Moni Naor, Omer Reingold, Alon Rosen

Pseudo-Random Functions and Factoring

Factoring integers is the most established problem on which
cryptographic primitives are based. This work presents an efficient
construction of {\em pseudorandom functions} whose security is based
on the intractability of factoring. In particular, we are able to
construct efficient length-preserving pseudorandom functions where
each evaluation requires only a ... more >>>

TR01-050 | 24th June 2001
Ran Canetti, Joe Kilian, Erez Petrank, Alon Rosen

Black-Box Concurrent Zero-Knowledge Requires $\tilde\Omega(\log n)$ Rounds

We show that any concurrent zero-knowledge protocol for a non-trivial
language (i.e., for a language outside $\BPP$), whose security is proven
via black-box simulation, must use at least $\tilde\Omega(\log n)$
rounds of interaction. This result achieves a substantial improvement
over previous lower bounds, and is the first bound to rule ... more >>>

ISSN 1433-8092 | Imprint