Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR95-025 | 8th May 1995 00:00

Analytic Machines

RSS-Feed




TR95-025
Authors: Günter Hotz, Gero Vierke, Bjoern Schieffer
Publication: 7th June 1995 15:11
Downloads: 2020
Keywords: 


Abstract:

In this paper the $R$-machines defined by Blum, Shub and Smale
are generalized by allowing infinite convergent computations.
The description of real numbers is infinite.
Therefore, considering arithmetic operations on real numbers should
also imply infinite computations on {\em analytic machines}.
We prove that $\R$-computable functions are $\Q$-analytic.
We show that $R$-machines extended by finite sets of
{\em strong analytic} operations are still $\Q$-analytic.
The halting problem of the analytic machines contains the stability
problem of dynamic systems.
It follows with well known methods that this problem is not analytical
decidable.
This is in a sense a stronger result as the {\em numerical undecidable}
stability in the theory of Kolmogoroff, Arnold and Moser.


Comment(s):

Comment #1 to TR95-025 | 11th May 2001 12:36

Errata in "Analytic Machines" Comment on: TR95-025





Comment #1
Authors: Günter Hotz, Thomas Chadzelek
Accepted on: 11th May 2001 12:36
Downloads: 1975
Keywords: 


Abstract:

We correct some minor errors concerning the definitions of delta-Q-machine and robustness.




ISSN 1433-8092 | Imprint