The satisfiability problem of Boolean Formulae in 3-CNF (3-SAT)
is a well known NP-complete problem and the development of faster
(moderately exponential time) algorithms has received much interest
in recent years. We show that the 3-SAT problem can be solved by a
probabilistic algorithm in expected time O(1,3290^n).
Our approach is based on Schoening's random walk algorithm for
k-SAT, modified in two ways.