Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR04-016 | 3rd March 2004 00:00

Linear Upper Bounds for Random Walk on Small Density Random 3CNFs

RSS-Feed




TR04-016
Authors: Michael Alekhnovich, Eli Ben-Sasson
Publication: 8th March 2004 09:55
Downloads: 1864
Keywords: 


Abstract:

We analyze the efficiency of the random walk algorithm on random 3CNF instances, and prove em linear upper bounds on the running time
of this algorithm for small clause density, less than 1.63. Our upper bound matches the observed running time to within a multiplicative factor. This is the first sub-exponential upper bound on the running time of a local improvement algorithm on random instances.

Our proof introduces a simple, yet powerful tool for analyzing such algorithms, which may be of further use. This object, called a terminator, is a weighted satisfying assignment. We show that any CNF having a good (small weight) terminator, is assured to be solved quickly by the random walk algorithm. This raises the natural question of the terminator threshold which is the maximal clause density for which such assignments exist (with high probability).

We use the analysis of the pure literal heuristic presented by Broder, Frieze and Upfal and show that for small clause densities good terminators exist. Thus we show that the Pure Literal threshold (~ 1.63) is a lower bound on the terminator threshold. (We conjecture the terminator threshold to be in fact higher).

One nice property of terminators is that they can be found efficiently, via linear programming. This makes tractable the future investigation of the terminator threshold, and also provides an efficiently computable certificate for short running time of the simple random-walk heuristic.



ISSN 1433-8092 | Imprint