Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > EXTRACTOR:
Reports tagged with extractor:
TR05-071 | 29th June 2005
Marius Zimand

Simple extractors via constructions of cryptographic pseudo-random generators

Trevisan has shown that constructions of pseudo-random generators from
hard functions (the Nisan-Wigderson approach) also produce extractors.
We show that constructions of pseudo-random generators from one-way permutations
(the Blum-Micali-Yao approach) can be used for building extractors as well.
Using this new technique we build extractors that ... more >>>


TR05-100 | 30th August 2005
David Zuckerman

Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number

A randomness extractor is an algorithm which extracts randomness from a low-quality random source, using some additional truly random bits. We construct new extractors which require only log n + O(1) additional random bits for sources with constant entropy rate. We further construct dispersers, which are similar to one-sided extractors, ... more >>>


TR05-105 | 24th September 2005
Lance Fortnow, John Hitchcock, A. Pavan, N. V. Vinodchandran, Fengming Wang

Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws

We apply recent results on extracting randomness from independent
sources to ``extract'' Kolmogorov complexity. For any $\alpha,
\epsilon > 0$, given a string $x$ with $K(x) > \alpha|x|$, we show
how to use a constant number of advice bits to efficiently
compute another string $y$, $|y|=\Omega(|x|)$, with $K(y) >
(1-\epsilon)|y|$. ... more >>>


TR05-106 | 26th September 2005
Anup Rao

Extractors for a Constant Number of Polynomial Min-Entropy Independent Sources

Revisions: 1


We consider the problem of bit extraction from independent sources. We
construct an extractor that can extract from a constant number of
independent sources of length $n$, each of which have min-entropy
$n^\gamma$ for an arbitrarily small constant $\gamma > 0$. Our
constructions are different from recent extractor constructions
more >>>


TR06-080 | 16th June 2006
David Doty

Dimension Extractors

A dimension extractor is an algorithm designed to increase the effective dimension -- i.e., the computational information density -- of an infinite sequence. A constructive dimension extractor is exhibited by showing that every sequence of positive constructive dimension is Turing equivalent to a sequence of constructive strong dimension arbitrarily ... more >>>


TR07-034 | 29th March 2007
Anup Rao

An Exposition of Bourgain's 2-Source Extractor

A construction of Bourgain gave the first 2-source
extractor to break the min-entropy rate 1/2 barrier. In this note,
we write an exposition of his result, giving a high level way to view
his extractor construction.

We also include a proof of a generalization of Vazirani's XOR lemma
that seems ... more >>>


TR10-064 | 13th April 2010
Xin Li

A New Approach to Affine Extractors and Dispersers

We study the problem of constructing affine extractors over $\mathsf{GF(2)}$. Previously the only known construction that can handle sources with arbitrarily linear entropy is due to Bourgain (and a slight modification by Yehudayoff), which relies heavily on the technique of Van der Corput differencing and a careful choice of a ... more >>>


TR10-190 | 9th December 2010
Xin Li

Improved Constructions of Three Source Extractors

We study the problem of constructing extractors for independent weak random sources. The probabilistic method shows that there exists an extractor for two independent weak random sources on $n$ bits with only logarithmic min-entropy. However, previously the best known explicit two source extractor only achieves min-entropy $0.499n$ \cite{Bourgain05}, and the ... more >>>


TR11-056 | 14th April 2011
Emanuele Viola

Extractors for circuit sources

We obtain the first deterministic extractors for sources generated (or sampled) by small circuits of bounded depth. Our main results are:

(1) We extract $k (k/nd)^{O(1)}$ bits with exponentially small error from $n$-bit sources of min-entropy $k$ that are generated by functions $f : \{0,1\}^\ell \to \{0,1\}^n$ where each output ... more >>>


TR11-161 | 4th December 2011
Xin Li

Design Extractors, Non-Malleable Condensers and Privacy Amplification

We introduce a new combinatorial object, called a \emph{design extractor}, that has both the properties of a design and an extractor. We give efficient constructions of such objects and show that they can be used in several applications.

\begin{enumerate}
\item {Improving the output length of known non-malleable extractors.} Non-malleable extractors ... more >>>


TR11-166 | 4th December 2011
Xin Li

Non-Malleable Extractors for Entropy Rate $<1/2$

Revisions: 1

Dodis and Wichs \cite{DW09} introduced the notion of a non-malleable extractor to study the problem of privacy amplification with an active adversary. A non-malleable extractor is a much stronger version of a strong extractor. Given a weakly-random string $x$ and a uniformly random seed $y$ as the inputs, the non-malleable ... more >>>


TR12-047 | 24th April 2012
Emanuele Viola

Extractors for Turing-machine sources

We obtain the first deterministic randomness extractors
for $n$-bit sources with min-entropy $\ge n^{1-\alpha}$
generated (or sampled) by single-tape Turing machines
running in time $n^{2-16 \alpha}$, for all sufficiently
small $\alpha > 0$. We also show that such machines
cannot sample a uniform $n$-bit input to the Inner
Product function ... more >>>


TR12-147 | 7th November 2012
Xin Li

New Independent Source Extractors with Exponential Improvement

We study the problem of constructing explicit extractors for independent general weak random sources. For weak sources on $n$ bits with min-entropy $k$, perviously the best known extractor needs to use at least $\frac{\log n}{\log k}$ independent sources \cite{Rao06, BarakRSW06}. In this paper we give a new extractor that only ... more >>>


TR13-025 | 6th February 2013
Xin Li

Extractors for a Constant Number of Independent Sources with Polylogarithmic Min-Entropy

Revisions: 1

We study the problem of constructing explicit extractors for independent general weak random sources. Given weak sources on $n$ bits, the probabilistic method shows that there exists a deterministic extractor for two independent sources with min-entropy as small as $\log n+O(1)$. However, even to extract from a constant number of ... more >>>


TR13-120 | 4th September 2013
Zeyu Guo

Randomness-efficient Curve Samplers

Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the ... more >>>


TR14-102 | 4th August 2014
Eshan Chattopadhyay, David Zuckerman

Non-Malleable Codes Against Constant Split-State Tampering

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs \cite{DPW10} as an elegant generalization of the classical notions of error detection, where the corruption of a codeword is viewed as a tampering function acting on it. Informally, a non-malleable code with respect to a family of tampering functions $\mathcal{F}$ consists ... more >>>


TR14-149 | 10th November 2014
Kai-Min Chung, Xin Li, Xiaodi Wu

Multi-Source Randomness Extractors Against Quantum Side Information, and their Applications

We study the problem of constructing multi-source extractors in the quantum setting, which extract almost uniform random bits against quantum side information collected from several initially independent classical random sources. This is a natural generalization of seeded randomness extraction against quantum side information and classical independent source extraction. With new ... more >>>


TR15-034 | 8th March 2015
Xin Li

Three-Source Extractors for Polylogarithmic Min-Entropy

We continue the study of constructing explicit extractors for independent
general weak random sources. The ultimate goal is to give a construction that matches what is given by the probabilistic method --- an extractor for two independent $n$-bit weak random sources with min-entropy as small as $\log n+O(1)$. Previously, the ... more >>>


TR15-075 | 29th April 2015
Eshan Chattopadhyay, Vipul Goyal, Xin Li

Non-Malleable Extractors and Codes, with their Many Tampered Extensions

Revisions: 1

Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are \emph{seeded non-malleable extractors}, introduced by Dodis and Wichs \cite{DW09}; \emph{seedless non-malleable extractors}, introduced by Cheraghchi and Guruswami ... more >>>


TR15-119 | 23rd July 2015
Eshan Chattopadhyay, David Zuckerman

Explicit Two-Source Extractors and Resilient Functions

Revisions: 5

We explicitly construct an extractor for two independent sources on $n$ bits, each with min-entropy at least $\log^C n$ for a large enough constant $C$. Our extractor outputs one bit and has error $n^{-\Omega(1)}$. The best previous extractor, by Bourgain [B2], required each source to have min-entropy $.499n$.

A key ... more >>>


TR15-121 | 25th July 2015
Xin Li

Extractors for Affine Sources with Polylogarithmic Entropy

We give the first explicit construction of deterministic extractors for affine sources over $F_2$, with entropy $k \geq \log^C n$ for some large enough constant $C$, where $n$ is the length of the source. Previously the best known results are by Bourgain \cite{Bourgain07}, Yehudayoff \cite{Yehudayoff10} and Li \cite{Li11a}, which require ... more >>>


TR15-125 | 5th August 2015
Xin Li

Improved Constructions of Two-Source Extractors

Revisions: 2

In a recent breakthrough \cite{CZ15}, Chattopadhyay and Zuckerman gave an explicit two-source extractor for min-entropy $k \geq \log^C n$ for some large enough constant $C$. However, their extractor only outputs one bit. In this paper, we improve the output of the two-source extractor to $k^{\Omega(1)}$, while the error remains $n^{-\Omega(1)}$.

... more >>>

TR15-178 | 10th November 2015
Eshan Chattopadhyay, Xin Li

Extractors for Sumset Sources

We propose a new model of weak random sources which we call sumset sources. A sumset source $\mathbf{X}$ is the sum of $C$ independent sources $\mathbf{X}_1,\ldots,\mathbf{X}_C$, where each $\mathbf{X}_i$ is an $n$-bit source with min-entropy $k$. We show that extractors for this class of sources can be used to give ... more >>>


TR16-018 | 3rd February 2016
Kuan Cheng, Xin Li

Randomness Extraction in $AC^0$ and with Small Locality

Revisions: 7

We study two variants of seeded randomness extractors. The first one, as studied by Goldreich et al. \cite{goldreich2015randomness}, is seeded extractors that can be computed by $AC^0$ circuits. The second one, as introduced by Bogdanov and Guo \cite{bogdanov2013sparse}, is (strong) extractor families that consist of sparse transformations, i.e., functions that ... more >>>


TR16-036 | 13th March 2016
Eshan Chattopadhyay, Xin Li

Explicit Non-Malleable Extractors, Multi-Source Extractors and Almost Optimal Privacy Amplification Protocols

Revisions: 3

We make progress in the following three problems: 1. Constructing optimal seeded non-malleable extractors; 2. Constructing optimal privacy amplification protocols with an active adversary, for any possible security parameter; 3. Constructing extractors for independent weak random sources, when the min-entropy is extremely small (i.e., near logarithmic).

For the first ... more >>>


TR16-115 | 30th July 2016
Xin Li

Improved Non-Malleable Extractors, Non-Malleable Codes and Independent Source Extractors

In this paper we give improved constructions of several central objects in the literature of randomness extraction and tamper-resilient cryptography. Our main results are:

(1) An explicit seeded non-malleable extractor with error $\epsilon$ and seed length $d=O(\log n)+O(\log(1/\epsilon)\log \log (1/\epsilon))$, that supports min-entropy $k=\Omega(d)$ and outputs $\Omega(k)$ bits. Combined with ... more >>>


TR16-180 | 15th November 2016
Eshan Chattopadhyay, Xin Li

Non-Malleable Codes and Extractors for Small-Depth Circuits, and Affine Functions

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs as an elegant relaxation of error correcting codes, where the motivation is to handle more general forms of tampering while still providing meaningful guarantees. This has led to many elegant constructions and applications in cryptography. However, most works so far only ... more >>>


TR18-028 | 7th February 2018
Xin Li

Pseudorandom Correlation Breakers, Independence Preserving Mergers and their Applications

Revisions: 1

The recent line of study on randomness extractors has been a great success, resulting in exciting new techniques, new connections, and breakthroughs to long standing open problems in the following five seemingly different topics: seeded non-malleable extractors, privacy amplification protocols with an active adversary, independent source extractors (and explicit Ramsey ... more >>>


TR18-070 | 13th April 2018
Eshan Chattopadhyay, Xin Li

Non-Malleable Extractors and Codes in the Interleaved Split-State Model and More

Revisions: 3

We present explicit constructions of non-malleable codes with respect to the following tampering classes. (i) Linear functions composed with split-state adversaries: In this model, the codeword is first tampered by a split-state adversary, and then the whole tampered codeword is further tampered by a linear function. (ii) Interleaved split-state adversary: ... more >>>


TR22-109 | 27th July 2022
Siddharth Iyer, Michael Whitmeyer

Searching for Regularity in Bounded Functions

Given a function $f:\mathbb F_2^n \to [-1,1]$, this work seeks to find a large affine subspace $\mathcal U$ such that $f$, when restricted to $\mathcal U$, has small nontrivial Fourier coefficients.

We show that for any function $f:\mathbb F_2^n \to [-1,1]$ with Fourier degree $d$, there exists an affine subspace ... more >>>


TR23-023 | 13th March 2023
Xin Li

Two Source Extractors for Asymptotically Optimal Entropy, and (Many) More

Revisions: 1

A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications, including seeded or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with an active adversary, non-malleable codes and many more. These connections essentially show ... more >>>


TR23-058 | 23rd April 2023
Xin Li, Yan Zhong

Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Revisions: 2

Affine extractors give some of the best-known lower bounds for various computational models, such as AC$^0$ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) introduced ... more >>>




ISSN 1433-8092 | Imprint