Arkadev Chattopadhyay, Michal Koucky, Andreas Krebs, Mario Szegedy, Pascal Tesson, Denis ThÃ©rien

We study languages with bounded communication complexity in the multiparty "input on the forehead" model with worst-case partition. In the two party case, it is known that such languages are exactly those that are recognized by programs over commutative monoids. This can be used to show that these languages can ... more >>>

Irit Dinur, Madhu Sudan, Avi Wigderson

Given two binary linear codes R and C, their tensor product R \otimes C consists of all matrices with rows in R and columns in C. We analyze the "robustness" of the following test for this code (suggested by Ben-Sasson and Sudan~\cite{BenSasson-Sudan04}): Pick a random row (or column) and check ... more >>>

Or Meir

Given linear two codes R,C, their tensor product $R \otimes C$

consists of all matrices whose rows are codewords of R and whose

columns are codewords of C. The product $R \otimes C$ is said to

be robust if for every matrix M that is far from $R \otimes C$

more >>>

Oded Goldreich, Or Meir

Given two codes R,C, their tensor product $R \otimes C$ consists of all matrices whose rows are codewords of R and whose columns are codewords of C. The product $R \otimes C$ is said to be robust if for every matrix M that is far from $R \otimes C$ it ... more >>>

Shachar Lovett, Emanuele Viola

We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of $1-1/n^{\Omega(1)}$ on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a.~$\mathrm{AC}^0$) circuit $f : \{0,1\}^{\mathrm{poly}(n)} \to \{0,1\}^n$, and (ii) the uniform distribution ... more >>>

Or Meir

The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of the theorem are based on the arithmetization technique, which transforms a quantified Boolean formula into a related polynomial. The ... more >>>

Xin Li

In this paper we give improved constructions of several central objects in the literature of randomness extraction and tamper-resilient cryptography. Our main results are:

(1) An explicit seeded non-malleable extractor with error $\epsilon$ and seed length $d=O(\log n)+O(\log(1/\epsilon)\log \log (1/\epsilon))$, that supports min-entropy $k=\Omega(d)$ and outputs $\Omega(k)$ bits. Combined with ... more >>>

Zeev Dvir, Alexander Golovnev, Omri Weinstein

We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of $t \geq \omega(\log^2 n)$ on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small ... more >>>