Boaz Barak, Yehuda Lindell, Salil Vadhan

We show new lower bounds and impossibility results for general (possibly <i>non-black-box</i>) zero-knowledge proofs and arguments. Our main results are that, under reasonable complexity assumptions:

<ol>

<li> There does not exist a two-round zero-knowledge <i>proof</i> system with perfect completeness for an NP-complete language. The previous impossibility result for two-round zero ...
more >>>

Rafail Ostrovsky, Giuseppe Persiano, Ivan Visconti

One of the central questions in Cryptography today is proving security of the protocols ``on the Internet'', i.e., in a concurrent setting where there are multiple interactions between players, and where the adversary can play so called ``man-in-the-middle'' attacks, forwarding and modifying messages between two or more unsuspecting players. Indeed, ... more >>>

Yael Tauman Kalai, Ran Raz

An interactive-PCP (say, for the membership $x \in L$) is a

proof that can be verified by reading only one of its bits, with the

help of a very short interactive-proof.

We show that for membership in some languages $L$, there are

interactive-PCPs that are significantly shorter than the known

more >>>

Jonathan Katz

We show that if a language $L$ has a 4-round, black-box, computational zero-knowledge proof system with negligible soundness error, then $\bar L \in MA$. Assuming the polynomial hierarchy does not collapse, this means, in particular, that $NP$-complete languages do not have 4-round zero-knowledge proofs (at least with respect to black-box ... more >>>

David Xiao

Learning is a central task in computer science, and there are various

formalisms for capturing the notion. One important model studied in

computational learning theory is the PAC model of Valiant (CACM 1984).

On the other hand, in cryptography the notion of ``learning nothing''

is often modelled by the simulation ...
more >>>

Iftach Haitner, Omer Reingold, Salil Vadhan, Hoeteck Wee

We put forth a new computational notion of entropy, which measures the

(in)feasibility of sampling high entropy strings that are consistent

with a given protocol. Specifically, we say that the i'th round of a

protocol (A, B) has _accessible entropy_ at most k, if no

polynomial-time strategy A^* can generate ...
more >>>

Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, Amit Sahai

Motivated by the question of basing cryptographic protocols on stateless tamper-proof hardware tokens, we revisit the question of unconditional two-prover zero-knowledge proofs for $NP$. We show that such protocols exist in the {\em interactive PCP} model of Kalai and Raz (ICALP '08), where one of the provers is replaced by ... more >>>

Benny Applebaum, Pavel Raykov

\emph{Statistical Zero-knowledge proofs} (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a computationally-unbounded server to convince a computationally-limited client that an input $x$ is in a language $\Pi$ without revealing any additional information about $x$ that the client cannot compute by herself. \emph{Randomized encoding} (RE) of functions (Ishai and Kushilevitz, FOCS ... more >>>

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Madars Virza

The seminal result that every language having an interactive proof also has a zero-knowledge interactive proof assumes the existence of one-way functions. Ostrovsky and Wigderson (ISTCS 1993) proved that this assumption is necessary: if one-way functions do not exist, then only languages in BPP have zero-knowledge interactive proofs.

Ben-Or et ... more >>>

Pavel Hubacek, Moni Naor, Eylon Yogev

The class TFNP is the search analog of NP with the additional guarantee that any instance has a solution. TFNP has attracted extensive attention due to its natural syntactic subclasses that capture the computational complexity of important search problems from algorithmic game theory, combinatorial optimization and computational topology. Thus, one ... more >>>

Alessandro Chiesa, Michael Forbes, Nicholas Spooner

Many seminal results in Interactive Proofs (IPs) use algebraic techniques based on low-degree polynomials, the study of which is pervasive in theoretical computer science. Unfortunately, known methods for endowing such proofs with zero knowledge guarantees do not retain this rich algebraic structure.

In this work, we develop algebraic techniques for ... more >>>

Nir Bitansky, Omer Paneth, Yael Tauman Kalai

We study multi-collision-resistant hash functions --- a natural relaxation of collision-resistant hashing that only guarantees the intractability of finding many (rather than two) inputs that map to the same image. An appealing feature of such hash functions is that unlike their collision-resistant counterparts, they do not necessarily require a key. ... more >>>

Itay Berman, Akshay Degwekar, Ron Rothblum, Prashant Nalini Vasudevan

Since its inception, public-key encryption (PKE) has been one of the main cornerstones of cryptography. A central goal in cryptographic research is to understand the foundations of public-key encryption and in particular, base its existence on a natural and generic complexity-theoretic assumption. An intriguing candidate for such an assumption is ... more >>>

Alessandro Chiesa, Michael Forbes, Tom Gur, Nicholas Spooner

Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assumption: if the provers are spatially isolated, ... more >>>