Brett Hemenway, Rafail Ostrovsky

In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is also a Locally-Decodable Error-Correcting Code.

In particular, our construction simultaneously satisfies all of the following properties:

\begin{itemize}

\item

Our Public-Key Encryption is semantically secure under a certain number-theoretic hardness assumption

...
more >>>

Chongwon Cho, Chen-Kuei Lee, Rafail Ostrovsky

It is well known that proving the security of a key agreement protocol (even in a special case where the protocol transcript looks random to an outside observer) is at least as difficult as proving $P \not = NP$. Another (seemingly unrelated) statement in cryptography is the existence of two ... more >>>

Boaz Barak

We survey the computational foundations for public-key cryptography. We discuss the computational assumptions that have been used as bases for public-key encryption schemes, and the types of evidence we have for the veracity of these assumptions.

This is a survey that appeared in a book of surveys in honor of ... more >>>

Itay Berman, Akshay Degwekar, Ron Rothblum, Prashant Nalini Vasudevan

Since its inception, public-key encryption (PKE) has been one of the main cornerstones of cryptography. A central goal in cryptographic research is to understand the foundations of public-key encryption and in particular, base its existence on a natural and generic complexity-theoretic assumption. An intriguing candidate for such an assumption is ... more >>>