We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:
1. Noise-resistant. A syntactically multilinear ... more >>>
The motivation for this paper is to study the complexity of constant-width arithmetic circuits. Our main results are the following.
1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized monotone circuit of width 2k but has no subexponential-sized monotone circuit ...
more >>>
Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower ... more >>>
This work is about the monotone versions of the algebraic complexity classes VP and VNP. The main result is that monotone VNP is strictly stronger than monotone VP.
Valiant (1980) showed that general arithmetic circuits with negation can be exponentially more powerful than monotone ones. We give the first qualitative improvement to this classical result: we construct a family of polynomials $P_n$ in $n$ variables, each of its monomials has positive coefficient, such that $P_n$ can be computed ... more >>>
Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity, DNF sparsification, randomness extractors, and recent advances on the Erd\H{o}s-Rado sunflower conjecture. The recent breakthrough of Alweiss, Lovett, Wu and Zhang gives an improved bound on the maximum size of a $w$-set system that excludes ... more >>>
We show that there is a family of monotone multilinear polynomials over $n$ variables in VP, such that any monotone arithmetic circuit for it would be of size $2^{\Omega(n)}$. Before our result, strongly exponential lower bounds on the size of monotone circuits were known only for computing explicit polynomials in ... more >>>
In this work, we study the natural monotone analogues of various equivalent definitions of VPSPACE: a well studied class (Poizat 2008, Koiran & Perifel 2009, Malod 2011, Mahajan & Rao 2013) that is believed to be larger than VNP. We observe that these monotone analogues are not equivalent unlike their ... more >>>
In this paper we prove the following two results.
* We show that for any $C \in {mVF, mVP, mVNP}$, $C = \overline{C}$. Here, $mVF, mVP$, and $mVNP$ are monotone variants of $VF, VP$, and $VNP$, respectively. For an algebraic complexity class $C$, $\overline{C}$ denotes the closure of $C$. ...
more >>>