Ran Raz, Amir Yehudayoff

We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:

1. Noise-resistant. A syntactically multilinear ... more >>>

Vikraman Arvind, Pushkar Joglekar, Srikanth Srinivasan

The motivation for this paper is to study the complexity of constant-width arithmetic circuits. Our main results are the following.

1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized monotone circuit of width 2k but has no subexponential-sized monotone circuit ...
more >>>

Stasys Jukna

Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower ... more >>>

Amir Yehudayoff

This work is about the monotone versions of the algebraic complexity classes VP and VNP. The main result is that monotone VNP is strictly stronger than monotone VP.

Arkadev Chattopadhyay, Rajit Datta, Partha Mukhopadhyay

Valiant (1980) showed that general arithmetic circuits with negation can be exponentially more powerful than monotone ones. We give the first qualitative improvement to this classical result: we construct a family of polynomials $P_n$ in $n$ variables, each of its monomials has positive coefficient, such that $P_n$ can be computed ... more >>>