Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > LOW-DEGREE POLYNOMIALS:
Reports tagged with low-degree polynomials:
TR06-107 | 26th August 2006
Arkadev Chattopadhyay

An improved bound on correlation between polynomials over Z_m and MOD_q

Revisions: 1

Let m,q > 1 be two integers that are co-prime and A be any subset of Z_m. Let P be any multi-linear polynomial of degree d in n variables over Z_m. We show that the MOD_q boolean function on n variables has correlation at most exp(-\Omega(n/(m2^{m-1})^d)) with the boolean function ... more >>>


TR08-005 | 15th January 2008
Scott Aaronson, Avi Wigderson

Algebrization: A New Barrier in Complexity Theory

Any proof of P!=NP will have to overcome two barriers: relativization
and natural proofs. Yet over the last decade, we have seen circuit
lower bounds (for example, that PP does not have linear-size circuits)
that overcome both barriers simultaneously. So the question arises of
whether there ... more >>>


TR09-030 | 5th April 2009
Shachar Lovett

The density of weights of Generalized Reed-Muller codes

We study the density of the weights of Generalized Reed--Muller codes. Let $RM_p(r,m)$ denote the code of multivariate polynomials over $\F_p$ in $m$ variables of total degree at most $r$. We consider the case of fixed degree $r$, when we let the number of variables $m$ tend to infinity. We ... more >>>


TR09-086 | 2nd October 2009
Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, David Zuckerman

Optimal testing of Reed-Muller codes

Revisions: 1

We consider the problem of testing if a given function
$f : \F_2^n \rightarrow \F_2$ is close to any degree $d$ polynomial
in $n$ variables, also known as the Reed-Muller testing problem.
Alon et al.~\cite{AKKLR} proposed and analyzed a natural
$2^{d+1}$-query test for this property and showed that it accepts
more >>>


TR10-033 | 6th March 2010
Shachar Lovett, Partha Mukhopadhyay, Amir Shpilka

Pseudorandom generators for $\mathrm{CC}_0[p]$ and the Fourier spectrum of low-degree polynomials over finite fields

In this paper we give the first construction of a pseudorandom generator, with seed length $O(\log n)$, for $\mathrm{CC}_0[p]$, the class of constant-depth circuits with unbounded fan-in $\mathrm{MOD}_p$ gates, for some prime $p$. More accurately, the seed length of our generator is $O(\log n)$ for any constant error $\epsilon>0$. In ... more >>>


TR12-015 | 22nd February 2012
Albert Atserias, Anuj Dawar

Degree Lower Bounds of Tower-Type for Approximating Formulas with Parity Quantifiers

Revisions: 2

Kolaitis and Kopparty have shown that for any first-order formula with
parity quantifiers over the language of graphs there is a family of
multi-variate polynomials of constant-degree that agree with the
formula on all but a $2^{-\Omega(n)}$-fraction of the graphs with $n$
vertices. The proof yields a bound on the ... more >>>


TR17-125 | 7th August 2017
Badih Ghazi, Pritish Kamath, Prasad Raghavendra

Dimension Reduction for Polynomials over Gaussian Space and Applications

In this work we introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As applications, we address the following problems:

(I) Computability of the Approximately Optimal Noise Stable function over Gaussian space:

The goal ... more >>>


TR17-138 | 17th September 2017
Srikanth Srinivasan, Madhu Sudan

Local decoding and testing of polynomials over grids

The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that $n$-variate
polynomials of total degree at most $d$ over
grids, i.e. sets of the form $A_1 \times A_2 \times \cdots \times A_n$, form
error-correcting codes (of distance at least $2^{-d}$ provided $\min_i\{|A_i|\}\geq 2$).
In this work we explore their local
decodability and local testability. ... more >>>




ISSN 1433-8092 | Imprint