Per Enflo, Meera Sitharam

--

Scalar product estimates have so far been used in

proving several unweighted threshold lower bounds.

We show that if a basis set of Boolean functions satisfies

certain weak stability conditions, then

scalar product estimates

yield lower bounds for the size of weighted thresholds

of these basis functions.

Stable ...
more >>>

Valentin E. Brimkov, Stefan S. Dantchev

In the framework of the Blum-Shub-Smale real number model \cite{BSS}, we study the {\em algebraic complexity} of the integer linear programming problem

(ILP$_{\bf R}$) : Given a matrix $A \in {\bf R}^{m \times n}$ and vectors

$b \in {\bf R}^m$, $d \in {\bf R}^n$, decide if there is $x ...
more >>>

Ran Raz

An arithmetic formula is multi-linear if the polynomial computed

by each of its sub-formulas is multi-linear. We prove that any

multi-linear arithmetic formula for the permanent or the

determinant of an $n \times n$ matrix is of size super-polynomial

in $n$.

Ran Raz, Amir Shpilka, Amir Yehudayoff

We construct an explicit polynomial $f(x_1,...,x_n)$, with

coefficients in ${0,1}$, such that the size of any syntactically

multilinear arithmetic circuit computing $f$ is at least

$\Omega( n^{4/3} / log^2(n) )$. The lower bound holds over any field.

Peter Buergisser

Let $\tau(n)$ denote the minimum number of arithmetic operations sufficient to build the integer $n$ from the constant~$1$. We prove that if there are arithmetic circuits for computing the permanent of $n$ by $n$ matrices having size polynomial in $n$, then $\tau(n!)$ is polynomially bounded in $\log n$. Under the ... more >>>

Alexey Pospelov

We study the complexity of polynomial multiplication over arbitrary fields. We present a unified approach that generalizes all known asymptotically fastest algorithms for this problem. In particular, the well-known algorithm for multiplication of polynomials over fields supporting DFTs of large smooth orders, SchÃ¶nhage-Strassen's algorithm over arbitrary fields of characteristic different ... more >>>

Yang Li

In the paper, we introduce the concept of monotone rank, and using it as a powerful tool, we obtain several important and strong separation results in computational complexity.

\begin{itemize}

\item We show a super-exponential separation between monotone and non-monotone computation in the non-commutative model, and thus give the answer to ... more >>>

Zeev Dvir, Guillaume Malod, Sylvain Perifel, Amir Yehudayoff

This work deals with the power of linear algebra in the context of multilinear computation. By linear algebra we mean algebraic branching programs (ABPs) which are known to be computationally equivalent to two basic tools in linear algebra: iterated matrix multiplication and the determinant. We compare the computational power of ... more >>>

Joshua Grochow

We study the problem of matrix Lie algebra conjugacy. Lie algebras arise centrally in areas as diverse as differential equations, particle physics, group theory, and the Mulmuley--Sohoni Geometric Complexity Theory program. A matrix Lie algebra is a set $\mathcal{L}$ of matrices such that $A,B \in \mathcal{L}$ implies$AB - BA \in ... more >>>

Pavel Hrubes, Iddo Tzameret

We study arithmetic proof systems $\mathbb{P}_c(\mathbb{F})$ and $\mathbb{P}_f(\mathbb{F})$ operating with arithmetic circuits and arithmetic formulas, respectively, that prove polynomial identities over a field $\mathbb{F}$. We establish a series of structural theorems about these proof systems, the main one stating that $\mathbb{P}_c(\mathbb{F})$ proofs can be balanced: if a polynomial identity of ... more >>>

Nader Bshouty

In this paper we first show that Tester for an $F$-algebra $A$

and multilinear forms (see Testers and their Applications ECCC 2012) is equivalent to multilinear

algorithm for the product of elements in $A$

(see Algebraic

complexity theory. vol. 315, Springer-Verlag). Our

result is constructive in deterministic polynomial time. ...
more >>>

Fu Li, Iddo Tzameret

Motivated by the fundamental lower bounds questions in proof complexity, we investigate the complexity of generating identities of matrix rings, and related problems. Specifically, for a field $\mathbb{F}$ let $A$ be a non-commutative (associative) $\mathbb{F}$-algebra (e.g., the algebra Mat$_d(\mathbb{F})\;$ of $d\times d$ matrices over $\mathbb{F}$). We say that a non-commutative ... more >>>

Zeev Dvir, Rafael Mendes de Oliveira

We show that if $f(x_1,\ldots,x_n)$ is a polynomial with $s$ monomials and $g(x_1,\ldots,x_n)$ divides $f$ then $g$

has at most $\max(s^{O(\log s \log\log s)},d^{O(\log d)})$ monomials, where $d$ is a bound on the individual degrees

of $f$. This answers a question of von zur Gathen and Kaltofen (JCSS ...
more >>>

Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, Nitin Saurabh

The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant ... more >>>

Fu Li, Iddo Tzameret, Zhengyu Wang

Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the ... more >>>

C Ramya, Raghavendra Rao B V

We study limitations of polynomials computed by depth two circuits built over read-once polynomials (ROPs) and depth three syntactically multi-linear formulas.

We prove an exponential lower bound for the size of the $\Sigma\Pi^{[N^{1/30}]}$ arithmetic circuits built over syntactically multi-linear $\Sigma\Pi\Sigma^{[N^{8/15}]}$ arithmetic circuits computing a product of variable ...
more >>>

Toniann Pitassi, Iddo Tzameret

We survey recent progress in the proof complexity of strong proof systems and its connection to algebraic circuit complexity, showing how the synergy between the two gives rise to new approaches to fundamental open questions, solutions to old problems, and new directions of research. In particular, we focus on tight ... more >>>

Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, Avi Wigderson

We consider the problem of outputting succinct encodings of lists of generators for invariant rings. Mulmuley conjectured that there are always polynomial sized such encodings for all invariant rings. We provide simple examples that disprove this conjecture (under standard complexity assumptions).

more >>>Zeyu Guo

We introduce the problem of constructing explicit variety evasive subspace families. Given a family $\mathcal{F}$ of subvarieties of a projective or affine space, a collection $\mathcal{H}$ of projective or affine $k$-subspaces is $(\mathcal{F},\epsilon)$-evasive if for every $\mathcal{V}\in\mathcal{F}$, all but at most $\epsilon$-fraction of $W\in\mathcal{H}$ intersect every irreducible component of $\mathcal{V}$ ... more >>>