Prahladh Harsha, Rahul Jain, David McAllester, Jaikumar Radhakrishnan

We examine the communication required for generating random variables

remotely. One party Alice will be given a distribution D, and she

has to send a message to Bob, who is then required to generate a

value with distribution exactly D. Alice and Bob are allowed

to share random bits generated ...
more >>>

Boaz Barak, Mark Braverman, Xi Chen, Anup Rao

Does computing n copies of a function require n times the computational effort? In this work, we

give the first non-trivial answer to this question for the model of randomized communication

complexity.

We show that:

1. Computing n copies of a function requires sqrt{n} times the ... more >>>

Joshua Brody, Amit Chakrabarti, Ranganath Kondapally

The \textsc{equality} problem is usually one's first encounter with

communication complexity and is one of the most fundamental problems in the

field. Although its deterministic and randomized communication complexity

were settled decades ago, we find several new things to say about the

problem by focusing on two subtle aspects. The ...
more >>>

Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff

We show that in the model of zero error communication complexity, direct sum fails for average communication complexity as well as for external information cost. Our example also refutes a version of a conjecture by Braverman et al. that in the zero error case amortized communication complexity equals external information ... more >>>

Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, Igor Shinkar

For a string $a \in \{0,1\}^n$ its $k$-fold direct sum encoding is a function $f_a$ that takes as input sets $S \subseteq [n]$ of

size $k$ and outputs $f_a(S) = \sum_{i \in S} a_i$.

In this paper we are interested in the Direct Sum Testing Problem,

where we are given ...
more >>>

Anat Ganor, Gillat Kol, Ran Raz

We show an exponential gap between communication complexity and information complexity, by giving an explicit example for a communication task (relation), with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol cannot always be compressed to its internal information. By a result of ... more >>>

Anat Ganor, Gillat Kol, Ran Raz

We show an exponential gap between communication complexity and information complexity for boolean functions, by giving an explicit example of a partial function with information complexity $\leq O(k)$, and distributional communication complexity $\geq 2^k$. This shows that a communication protocol for a partial boolean function cannot always be compressed to ... more >>>

Anup Rao, Makrand Sinha

We study the complexity of parallelizing streaming algorithms (or equivalently, branching programs). If $M(f)$ denotes the minimum average memory required to compute a function $f(x_1,x_2, \dots, x_n)$ how much memory is required to compute $f$ on $k$ independent streams that arrive in parallel? We show that when the inputs (updates) ... more >>>

Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, Swagato Sanyal

Let the randomized query complexity of a relation for error probability $\epsilon$ be denoted by $\R_\epsilon(\cdot)$. We prove that for any relation $f \subseteq \{0,1\}^n \times \mathcal{R}$ and Boolean function $g:\{0,1\}^m \rightarrow \{0,1\}$, $\R_{1/3}(f\circ g^n) = \Omega(\R_{4/9}(f)\cdot\R_{1/2-1/n^4}(g))$, where $f \circ g^n$ is the relation obtained by composing $f$ and $g$. ... more >>>

Or Meir

The universal relation is the communication problem in which Alice and Bob get as inputs two distinct strings, and they are required to find a coordinate on which the strings differ. The study of this problem is motivated by its connection to Karchmer-Wigderson relations, which are communication problems that are ... more >>>

Roy Gotlib, Tali Kaufman

In this work, using methods from high dimensional expansion, we show that the property of $k$-direct-sum is testable for odd values of $k$ . Previous work of Kaufman and Lubotzky could inherently deal only with the case that $k$ is even, using a reduction to linearity testing.

Interestingly, our work ...
more >>>

Irit Dinur, Konstantin Golubev

A function f:[n_1] x ... x [n_d]-->F is a direct sum if it is of the form f(a_1,...,a_d) = f_1(a_1) + ... + f_d (a_d) (mod 2) for some d functions f_i:[n_i]-->F_i for all i=1,...,d. We present a 4-query test which distinguishes between direct sums and functions that are ...
more >>>

Robert Robere, Jeroen Zuiddam

We study the amortized circuit complexity of boolean functions.

Given a circuit model $\mathcal{F}$ and a boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$, the $\mathcal{F}$-amortized circuit complexity is defined to be the size of the smallest circuit that outputs $m$ copies of $f$ (evaluated on the same input), ...
more >>>