Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Interactive Proof Systems:
TR96-018 | 23rd February 1996
Oded Goldreich, Johan Håstad

On the Message Complexity of Interactive Proof Systems

Revisions: 2

We investigate the computational complexity of languages
which have interactive proof systems of bounded message complexity.
In particular, we show that
(1) If $L$ has an interactive proof in which the total
communication is bounded by $c(n)$ bits
then $L$ can be recognized a probabilitic machine
in time ... more >>>

TR97-031 | 9th September 1997
Oded Goldreich

On the Limits of Non-Approximability of Lattice Problems

Revisions: 2

We show simple constant-round interactive proof systems for
problems capturing the approximability, to within a factor of $\sqrt{n}$,
of optimization problems in integer lattices; specifically,
the closest vector problem (CVP), and the shortest vector problem (SVP).
These interactive proofs are for the ``coNP direction'';
that is, ... more >>>

TR01-096 | 21st November 2001
Jörg Rothe

Some Facets of Complexity Theory and Cryptography: A Five-Lectures Tutorial

Revisions: 1

In this tutorial, selected topics of cryptology and of
computational complexity theory are presented. We give a brief overview
of the history and the foundations of classical cryptography, and then
move on to modern public-key cryptography. Particular attention is
paid to cryptographic protocols and the problem of constructing ... more >>>

TR04-007 | 13th January 2004
Alan L. Selman, Samik Sengupta

Polylogarithmic-round Interactive Proofs for coNP Collapses the Exponential Hierarchy

Revisions: 1 , Comments: 1

It is known \cite{BHZ87} that if every language in coNP has a
constant-round interactive proof system, then the polynomial hierarchy
collapses. On the other hand, Lund {\em et al}.\ \cite{LFKN92} have shown that
#SAT, the #P-complete function that outputs the number of satisfying
assignments of a Boolean ... more >>>

TR04-083 | 8th September 2004
Boaz Barak, Yehuda Lindell, Salil Vadhan

Lower Bounds for Non-Black-Box Zero Knowledge

We show new lower bounds and impossibility results for general (possibly <i>non-black-box</i>) zero-knowledge proofs and arguments. Our main results are that, under reasonable complexity assumptions:
<li> There does not exist a two-round zero-knowledge <i>proof</i> system with perfect completeness for an NP-complete language. The previous impossibility result for two-round zero ... more >>>

TR12-091 | 16th July 2012
Abuzer Yakaryilmaz

One-counter verifiers for decidable languages

Condon and Lipton (FOCS 1989) showed that the class of languages having a space-bounded interactive proof system (IPS) is a proper subset of decidable languages, where the verifier is a probabilistic Turing machine. In this paper, we show that if we use architecturally restricted verifiers instead of restricting the working ... more >>>

TR12-130 | 3rd October 2012
Abuzer Yakaryilmaz

Public-qubits versus private-coins

We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>

TR13-004 | 11th November 2012
A. C. Cem Say, Abuzer Yakaryilmaz

Finite state verifiers with constant randomness

We give a new characterization of NL as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. ... more >>>

TR17-101 | 8th June 2017
Oded Goldreich

On the doubly-efficient interactive proof systems of GKR

Revisions: 1

We present a somewhat simpler variant of the doubly-efficient interactive proof systems of Goldwasser, Kalai, and Rothblum (JACM, 2015).
Recall that these proof systems apply to log-space uniform sets in NC (or, more generally, to inputs that are acceptable by log-space uniform bounded-depth circuits, where the number of rounds in ... more >>>

TR17-102 | 9th June 2017
Oded Goldreich

Overview of the doubly-efficient interactive proof systems of RRR

We provide an overview of the doubly-efficient interactive proof systems of Reingold, Rothblum, and Rothblum (STOC, 2016).
Recall that by their result, any set that is decidable in polynomial-time by an algorithm of space complexity $s(n)\leq n^{0.499}$, has a constant-round interactive proof system
in which the prover runs polynomial time ... more >>>

TR18-046 | 9th March 2018
Oded Goldreich, Guy Rothblum

Counting $t$-cliques: Worst-case to average-case reductions and Direct interactive proof systems

Revisions: 2

We present two main results regarding the complexity of counting the number of $t$-cliques in a graph.

\item{\em A worst-case to average-case reduction}:
We reduce counting $t$-cliques in any $n$-vertex graph to counting $t$-cliques in typical $n$-vertex graphs that are drawn from a simple distribution of min-entropy ${\widetilde\Omega}(n^2)$. For ... more >>>

TR20-058 | 24th April 2020
Shafi Goldwasser, Guy Rothblum, Jonathan Shafer, Amir Yehudayoff

Interactive Proofs for Verifying Machine Learning

Revisions: 1

We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is "approximately correct"? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept ... more >>>

TR21-010 | 11th February 2021
Eric Allender, John Gouwar, Shuichi Hirahara, Caleb Robelle

Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

Revisions: 1

A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT ... more >>>

TR22-052 | 18th April 2022
Tal Herman, Guy Rothblum

Verifying The Unseen: Interactive Proofs for Label-Invariant Distribution Properties

Given i.i.d. samples from an unknown distribution over a large domain $[N]$, approximating several basic quantities, including the distribution's support size, its entropy, and its distance from the uniform distribution, requires $\Theta(N / \log N)$ samples [Valiant and Valiant, STOC 2011].

Suppose, however, that we can interact with a powerful ... more >>>

TR22-057 | 25th April 2022
Lijie Chen, Roei Tell

When Arthur has Neither Random Coins nor Time to Spare: Superfast Derandomization of Proof Systems

Revisions: 1

What is the actual cost of derandomization? And can we get it for free? These questions were recently raised by Doron et. al (FOCS 2020) and have been attracting considerable interest. In this work we extend the study of these questions to the setting of *derandomizing interactive proofs systems*.

... more >>>

ISSN 1433-8092 | Imprint