Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Boolean functions:
TR96-010 | 9th February 1996
Christoph Meinel, Anna Slobodova

An Adequate Reducibility Concept for Problems Defined in Terms of Ordered Binary Decision Diagrams

Revisions: 1

Reducibility concepts are fundamental in complexity theory.
Usually, they are defined as follows: A problem P is reducible
to a problem S if P can be computed using a program or device
for S as a subroutine. However, in the case of such restricted
models as ... more >>>

TR16-174 | 7th November 2016
Elchanan Mossel, Sampath Sampath Kannan, Grigory Yaroslavtsev

Linear Sketching over $\mathbb F_2$

Revisions: 5 , Comments: 2

We initiate a systematic study of linear sketching over $\mathbb F_2$. For a given Boolean function $f \colon \{0,1\}^n \to \{0,1\}$ a randomized $\mathbb F_2$-sketch is a distribution $\mathcal M$ over $d \times n$ matrices with elements over $\mathbb F_2$ such that $\mathcal Mx$ suffices for computing $f(x)$ with high ... more >>>

TR17-013 | 23rd January 2017
Abhishek Bhrushundi, Prahladh Harsha, Srikanth Srinivasan

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring $\mathbb{Z}/2^k\mathbb{Z}$. More precisely, given a Boolean function F$:\{0,1\}^n \rightarrow \{0,1\}$, define its $k$-lift to be F$_k:\{0,1\}^n \rightarrow \{0,2^{k-1}\}$ by $F_k(x) = 2^{k-F(x)}$ (mod $2^k$). We consider the fractional agreement (which we refer to as $\gamma_{d,k}(F)$) of $F_k$ with ... more >>>

TR17-180 | 26th November 2017
Irit Dinur, Yuval Filmus, Prahladh Harsha

Low degree almost Boolean functions are sparse juntas

Nisan and Szegedy showed that low degree Boolean functions are juntas. Kindler and Safra showed that low degree functions which are *almost* Boolean are close to juntas. Their result holds with respect to $\mu_p$ for every *constant* $p$. When $p$ is allowed to be very small, new phenomena emerge. ... more >>>

ISSN 1433-8092 | Imprint