A very recent paper by Caussinus, McKenzie, Therien, and Vollmer
[CMTV] shows that ACC^0 is properly contained in ModPH, and TC^0
is properly contained in the counting hierarchy. Thus, [CMTV] shows
that there are problems in ModPH that require superpolynomial-size
uniform ACC^0 ...
more >>>
We study the complexity of restricted versions of st-connectivity, which is the standard complete problem for NL. Grid graphs are a useful tool in this regard, since
* reachability on grid graphs is logspace-equivalent to reachability in general planar digraphs, and
* reachability on certain classes of grid graphs gives ...
more >>>
We put forth several simple candidate pseudorandom functions f_k : {0,1}^n -> {0,1} with security (a.k.a. hardness) 2^n that are inspired by the AES block-cipher by Daemen and Rijmen (2000). The functions are computable more efficiently, and use a shorter key (a.k.a. seed) than previous
constructions. In particular, we ...
more >>>
We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, ... more >>>
We present new constructions of pseudorandom generators (PRGs) for two of the most widely-studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth $d\in\mathbb{N}$ ... more >>>
For $n \in \mathbb{N}$ and $d = o(\log \log n)$, we prove that there is a Boolean function $F$ on $n$ bits and a value $\gamma = 2^{-\Theta(d)}$ such that $F$ can be computed by a uniform depth-$(d + 1)$ $\text{AC}^0$ circuit with $O(n)$ wires, but $F$ cannot be computed ... more >>>