We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, as a step towards proving ACC0 lower bounds for the majority function via our approach, we show that MAJORITY cannot be approximated by low-degree symmetric torus polynomials. We also pose several open problems related to our framework.
Extended introduction; final version that appears in the proceedings of ITCS 2019
We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, as a step towards proving ACC0 lower bounds for the majority function via our approach, we show that MAJORITY cannot be approximated by low-degree symmetric torus polynomials. We also pose several open problems related to our framework.
Fixed minor typos.
We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, as a step towards proving ACC0 lower bounds for the majority function via our approach, we show that MAJORITY cannot be approximated by low-degree symmetric torus polynomials. We also pose several open problems related to our framework.