Eric Allender

A very recent paper by Caussinus, McKenzie, Therien, and Vollmer

[CMTV] shows that ACC^0 is properly contained in ModPH, and TC^0

is properly contained in the counting hierarchy. Thus, [CMTV] shows

that there are problems in ModPH that require superpolynomial-size

uniform ACC^0 ...
more >>>

Eric Allender, David Mix Barrington, Tanmoy Chakraborty, Samir Datta, Sambuddha Roy

We study the complexity of restricted versions of st-connectivity, which is the standard complete problem for NL. Grid graphs are a useful tool in this regard, since

* reachability on grid graphs is logspace-equivalent to reachability in general planar digraphs, and

* reachability on certain classes of grid graphs gives ...
more >>>

Eric Miles, Emanuele Viola

We put forth several simple candidate pseudorandom functions f_k : {0,1}^n -> {0,1} with security (a.k.a. hardness) 2^n that are inspired by the AES block-cipher by Daemen and Rijmen (2000). The functions are computable more efficiently, and use a shorter key (a.k.a. seed) than previous

constructions. In particular, we ...
more >>>

Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, Sankeerth Rao Karingula

We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, ... more >>>

Pooya Hatami, William Hoza, Avishay Tal, Roei Tell

We present new constructions of pseudorandom generators (PRGs) for two of the most widely-studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth $d\in\mathbb{N}$ ... more >>>

Pooya Hatami, William Hoza, Avishay Tal, Roei Tell

For $n \in \mathbb{N}$ and $d = o(\log \log n)$, we prove that there is a Boolean function $F$ on $n$ bits and a value $\gamma = 2^{-\Theta(d)}$ such that $F$ can be computed by a uniform depth-$(d + 1)$ $\text{AC}^0$ circuit with $O(n)$ wires, but $F$ cannot be computed ... more >>>