Eric Allender, Igor E. Shparlinski, Michael Saks

Recent work by Bernasconi, Damm and Shparlinski

proved lower bounds on the circuit complexity of the square-free

numbers, and raised as an open question if similar (or stronger)

lower bounds could be proved for the set of prime numbers. In

this short note, we answer this question ...
more >>>

Or Meir, Avi Wigderson

Consider a random sequence of $n$ bits that has entropy at least $n-k$, where $k\ll n$. A commonly used observation is that an average coordinate of this random sequence is close to being uniformly distributed, that is, the coordinate “looks random”. In this work, we prove a stronger result that ... more >>>

Anirbit Mukherjee, Amitabh Basu

Motivated by the resurgence of neural networks in being able to solve complex learning tasks we undertake a study of high depth networks using ReLU gates which implement the function $x \mapsto \max\{0,x\}$. We try to understand the role of depth in such neural networks by showing size lowerbounds against ... more >>>

Alexander Smal, Navid Talebanfard

Let $X$ be a random variable distributed over $n$-bit strings with $H(X) \ge n - k$, where $k \ll n$. Using subadditivity we know that a random coordinate looks random. Meir and Wigderson [TR17-149] showed a random coordinate looks random to an adversary who is allowed to query around $n/k$ ... more >>>

Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, Sankeerth Rao Karingula

We propose an algebraic approach to proving circuit lower bounds for ACC0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC0 and ACC0 can be reformulated in this framework, implying that ACC0 can be approximated by low-degree torus polynomials. Furthermore, ... more >>>