Modular gates are known to be immune for the random
restriction techniques of Ajtai; Furst, Saxe, Sipser; and Yao and
Hastad. We demonstrate here a random clustering technique which
overcomes this difficulty and is capable to prove generalizations of
several known modular circuit lower bounds of Barrington, Straubing,
Therien; Krause ...
more >>>
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>
We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near optimal seed-length even in ... more >>>
We consider the problem of compression for ``easy'' Boolean functions: given the truth table of an $n$-variate Boolean function $f$ computable by some \emph{unknown small circuit} from a \emph{known class} of circuits, find in deterministic time $\poly(2^n)$ a circuit $C$ (no restriction on the type of $C$) computing $f$ so ... more >>>
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial compression algorithms for ``easy'' Boolean functions from the corresponding circuit classes. The compression problem is defined as follows: given the truth table of an $n$-variate Boolean function $f$ computable by some unknown small circuit ... more >>>
We give a function $h:\{0,1\}^n\to\{0,1\}$ such that every deMorgan formula of size $n^{3-o(1)}/r^2$ agrees with $h$ on at most a fraction of $\frac{1}{2}+2^{-\Omega(r)}$ of the inputs. This improves the previous average-case lower bound of Komargodski and Raz (STOC, 2013).
Our technical contributions include a theorem that shows that the ``expected ... more >>>
We give a deterministic #SAT algorithm for de Morgan formulas of size up to $n^{2.63}$, which runs in time $2^{n-n^{\Omega(1)}}$. This improves upon the deterministic #SAT algorithm of \cite{CKKSZ13}, which has similar running time but works only for formulas of size less than $n^{2.5}$.
Our new algorithm is based on ... more >>>
For Boolean functions computed by de Morgan formulas of subquadratic size or read-once de Morgan formulas, we prove a sharp concentration of the Fourier mass on ``small-degree'' coefficients. For a Boolean function $f:\{0,1\}^n\to\{1,-1\}$ computable by a de Morgan formula of size $s$, we show that
\[
\sum_{A\subseteq [n]\; :\; |A|>s^{1/\Gamma ...
more >>>
We give a new and improved proof that the shrinkage exponent of De Morgan formulae is $2$. Namely, we show that for any Boolean function $f: \{-1,1\}^n \to \{-1,1\}$, setting each variable out of $x_1, \ldots, x_n$ with probability $1-p$ to a randomly chosen constant, reduces the expected formula size ... more >>>
In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for ... more >>>
A polynomial threshold function (PTF) of degree $d$ is a boolean function of the form $f=\mathrm{sgn}(p)$, where $p$ is a degree-$d$ polynomial, and $\mathrm{sgn}$ is the sign function. The main result of the paper is an almost optimal bound on the probability that a random restriction of a PTF is ... more >>>
We present an explicit pseudorandom generator with seed length $\tilde{O}((\log n)^{w+1})$ for read-once, oblivious, width $w$ branching programs that can read their input bits in any order. This improves upon the work of Impaggliazzo, Meka and Zuckerman (FOCS'12) where they required seed length $n^{1/2+o(1)}$.
A central ingredient in our work ... more >>>
We construct pseudorandom generators of seed length $\tilde{O}(\log(n)\cdot \log(1/\epsilon))$ that $\epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with seed length $\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon))$. This is the first improvement for pseudorandom generators fooling width $3$ ROBPs since the work ... more >>>
We define new functions based on the Andreev function and prove that they require $n^{3}/polylog(n)$ formula size to compute. The functions we consider are generalizations of the Andreev function using compositions with the majority function. Our arguments apply to composing a hard function with any function that agrees with the ... more >>>
We give a nearly-optimal algorithm for testing uniformity of distributions supported on $\{-1,1\}^n$, which makes $\tilde O (\sqrt{n}/\varepsilon^2)$ queries to a subcube conditional sampling oracle (Bhattacharyya and Chakraborty (2018)). The key technical component is a natural notion of random restriction for distributions on $\{-1,1\}^n$, and a quantitative analysis of how ... more >>>
We consider arithmetic circuits with arbitrary large (multi-linear) gates for computing multi-linear functions. An adequate complexity measure for such circuits is the maximum between the arity of the gates and their number.
This model and the corresponding complexity measure were introduced by Goldreich and Wigderson (ECCC, TR13-043, 2013), ...
more >>>
How much computational resource do we need for cryptography? This is an important question of both theoretical and practical interests. In this paper, we study the problem on pseudorandom functions (PRFs) in the context of circuit complexity. Perhaps surprisingly, we prove extremely tight upper and lower bounds in various circuit ... more >>>