Loading jsMath...
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #2 to TR13-058 | 14th May 2017 08:58

Improved Average-Case Lower Bounds for De Morgan Formula Size

RSS-Feed




Revision #2
Authors: Ilan Komargodski, Ran Raz, Avishay Tal
Accepted on: 14th May 2017 08:58
Downloads: 1403
Keywords: 


Abstract:

We give a function h:\{0,1\}^n\to\{0,1\} such that every De Morgan formula of size n^{3-o(1)}/r^2 agrees with h on at most a fraction of \frac{1}{2}+2^{-\Omega(r)} of the inputs.

Our technical contributions include a theorem that shows that the ``expected shrinkage'' result of Hästad (SIAM J. Comput., 1998) actually holds with very high probability (where the restrictions are chosen from a certain distribution that takes into account the structure of the formula), using ideas of Impagliazzo, Meka and Zuckerman (FOCS, 2012).



Changes to previous version:

Fixed several typos, fixed a bug from the previous version that appeared in Appendix A (and moved the relevant proof to Section 4), and
improved the formula size lower bounds by using the tight shrinkage result from [Tal14].


Revision #1 to TR13-058 | 6th April 2013 00:03

Improved Average-Case Lower Bounds for DeMorgan Formula Size


Abstract:

We give a function h:\{0,1\}^n\to\{0,1\} such that every deMorgan formula of size n^{3-o(1)}/r^2 agrees with h on at most a fraction of \frac{1}{2}+2^{-\Omega(r)} of the inputs. This improves the previous average-case lower bound of Komargodski and Raz (STOC, 2013).

Our technical contributions include a theorem that shows that the ``expected shrinkage'' result of Håstad (SIAM J. Comput., 1998) actually holds with very high probability (where the restrictions are chosen from a certain distribution that takes into account the structure of the formula), combining ideas of both Impagliazzo, Meka and Zuckerman (FOCS, 2012) and Komargodski and Raz. In addition, using a bit-fixing extractor in the construction of h allows us to simplify a major part of the analysis of Komargodski and Raz.



Changes to previous version:

Fixed a typo in the abstract.


Paper:

TR13-058 | 5th April 2013 23:28

Improved Average-Case Lower Bounds for DeMorgan Formula Size


Abstract:

We give a function h:\{0,1\}^n\to\{0,1\} such that every deMorgan formula of size n^{3-o(1)}/r^2 agrees with h on at most a fraction of \frac{1}{2}+2^{-\Omega(r)} of the inputs. This improves the previous average-case lower bound of Komargodski and Raz (STOC, 2013).

Our technical contributions include a theorem that shows that the ``expected shrinkage'' result of Hästad (SIAM J. Comput., 1998) actually holds with very high probability (where the restrictions are chosen from a certain distribution that takes into account the structure of the formula), combining ideas of both Impagliazzo, Meka and Zuckerman (FOCS, 2012) and Komargodski and Raz. In addition, using a bit-fixing extractor in the construction of h allows us to simplify a major part of the analysis of Komargodski and Raz.



ISSN 1433-8092 | Imprint