A syntactic read-k times branching program has the restriction
that no variable occurs more than k times on any path (whether or not
consistent). We exhibit an explicit Boolean function f which cannot
be computed by nondeterministic syntactic read-k times branching programs
of size less than exp(\sqrt{n}}k^{-2k}), ...
more >>>
Almost the same types of restricted branching programs (or
binary decision diagrams BDDs) are considered in complexity
theory and in applications like hardware verification. These
models are read-once branching programs (free BDDs) and certain
types of oblivious branching programs (ordered and indexed BDDs
with k layers). The complexity of ...
more >>>
In unrestricted branching programs all variables may be tested
arbitrarily often on each path. But exponential lower bounds are only
known, if on each path the number of tests of each variable is bounded
(Borodin, Razborov and Smolensky (1993)). We examine branching programs
in which for each path the ...
more >>>
We examine the power of Boolean functions with low L_1 norms in several
settings. In large part of the recent literature, the degree of a polynomial
which represents a Boolean function in some way was chosen to be the measure of the complexity of the Boolean function.
However, some functions ...
more >>>
The main result of this paper is a Omega(n^{1/4}) lower bound
on the size of a sigmoidal circuit computing a specific AC^0_2 function.
This is the first lower bound for the computation model of sigmoidal
circuits with unbounded weights. We also give upper and lower bounds for
the ...
more >>>
We define the notion of a randomized branching program in
the natural way similar to the definition of a randomized
circuit. We exhibit an explicit function $f_{n}$ for which
we prove that:
1) $f_{n}$ can be computed by polynomial size randomized
...
more >>>
We extend the lower bounds on the depth of algebraic decision trees
to the case of {\em randomized} algebraic decision trees (with
two-sided error) for languages being finite unions of hyperplanes
and the intersections of halfspaces, solving a long standing open
problem. As an application, among ...
more >>>
We prove a general combinatorial lower bound on the
size of monotone circuits. The argument is different from
Razborov's method of approximation, and is based on Sipser's
notion of `finite limit' and Haken's `counting bottlenecks' idea.
We then apply this criterion to the ...
more >>>
The computational power of formal models for
networks of spiking neurons is compared with
that of other neural network models based on
McCulloch Pitts neurons (i.e. threshold gates)
respectively sigmoidal gates. In particular it
is shown that networks of spiking neurons are
...
more >>>
Branching programs (b.p.'s) or decision diagrams are a general
graph-based model of sequential computation. The b.p.'s of
polynomial size are a nonuniform counterpart of LOG. Lower bounds
for different kinds of restricted b.p.'s are intensively
investigated. An important restriction are so called $k$-b.p.'s,
where each computation reads each input ...
more >>>
The fundamental assumption in the classical theory of
dissemination of information in interconnection networks
(gossiping and broadcasting) is that atomic pieces of information
are communicated. We show that, under suitable assumptions about
the way processors may communicate, computing an n-ary function
that has a "critical input" (e.g., ...
more >>>
In a semantic resolution proof we operate with clauses only
but allow {\em arbitrary} rules of inference:
C_1 C_2 ... C_m
__________________
C
Consistency is the only requirement. We prove a very simple
exponential lower bound for the size ...
more >>>
We introduce a notion of a "real game"
(a generalization of the Karchmer - Wigderson game),
and "real communication complexity",
and relate them to the size of monotone real formulas
and circuits. We give an exponential lower bound
for tree-like monotone protocols of small real
communication complexity ...
more >>>
In this paper, we are concerned with randomized OBDDs and randomized
read-k-times branching programs. We present an example of a Boolean
function which has polynomial size randomized OBDDs with small,
one-sided error, but only non-deterministic read-once branching
programs of exponential size. Furthermore, we discuss a lower bound
technique for randomized ...
more >>>
We consider the problem of estimating the average of a huge set of values.
That is,
given oracle access to an arbitrary function $f:\{0,1\}^n\mapsto[0,1]$,
we need to estimate $2^{-n} \sum_{x\in\{0,1\}^n} f(x)$
upto an additive error of $\epsilon$.
We are allowed to employ a randomized algorithm which may ...
more >>>
Randomized branching programs are a probabilistic model of computation
defined in analogy to the well-known probabilistic Turing machines.
In this paper, we present complexity theoretic results for randomized
read-once branching programs.
Our main result shows that nondeterminism can be more powerful than
randomness for read-once branching programs. We present a ...
more >>>
Razborov~\cite{Razborov96} recently proved that polynomial
calculus proofs of the pigeonhole principle $PHP_n^m$ must have
degree at least $\ceiling{n/2}+1$ over any field. We present a
simplified proof of the same result. The main
idea of our proof is the same as in the original proof
of Razborov: we want to describe ...
more >>>
We consider the conjecture stating that a matrix with rank
$o(n)$ and ones on the main diagonal must contain nonzero
entries on a $2\times 2$ submatrix with one entry on the main
diagonal. We show that a slightly stronger conjecture implies
that ...
more >>>
Branching programs (b.p.s) or binary decision diagrams are a
general graph-based model of sequential computation. The b.p.s of
polynomial size are a nonuniform counterpart of LOG. Lower bounds
for different kinds of restricted b.p.s are intensively
investigated. The restrictions based on the number of tests of
more >>>
We obtain an exponential separation between consecutive
levels in the hierarchy of classes of functions computable by
polynomial-size syntactic read-$k$-times branching programs, for
{\em all\/} $k>0$, as conjectured by various
authors~\cite{weg87,ss93,pon95b}. For every $k$, we exhibit two
explicit functions that can be computed by linear-sized
read-$(\kpluso)$-times branching programs but ...
more >>>
We introduce a model of a {\em randomized branching program}
in a natural way similar to the definition of a randomized circuit.
We exhibit an explicit boolean function
$f_{n}:\{0,1\}^{n}\to\{0,1\}$ for which we prove that:
1) $f_{n}$ can be computed by a polynomial size randomized
...
more >>>
We prove an exponential lower bound ($2^{\Omega(n/\log n)}$) on the
size of any randomized ordered read-once branching program
computing integer multiplication. Our proof depends on proving
a new lower bound on Yao's randomized one-way communication
complexity of certain boolean functions. It generalizes to some
other ...
more >>>
We extend the tools for proving lower bounds for randomized branching
programs by presenting a new technique for the read-once case which is
applicable to a large class of functions. This technique fills the gap
between simple methods only applicable for OBDDs and the well-known
"rectangle technique" of Borodin, Razborov ...
more >>>
We obtain improved lower bounds for a class of static and dynamic
data structure problems that includes several problems of searching
sorted lists as special cases.
These lower bounds nearly match the upper bounds given by recent
striking improvements in searching algorithms given by Fredman and
Willard's ...
more >>>
We propose an information-theoretic approach to proving
lower bounds on the size of branching programs (b.p.). The argument
is based on Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during various
stages of the computation. ...
more >>>
We survey some upper and lower bounds established recently on
the sizes of randomized branching programs computing explicit
boolean functions. In particular, we display boolean
functions on which randomized read-once ordered branching
programs are exponentially more powerful than deterministic
or nondeterministic read-$k$-times branching programs for ...
more >>>
We consider a general model of monotone circuits, which
we call d-local. In these circuits we allow as gates:
(i) arbitrary monotone Boolean functions whose minterms or
maxterms (or both) have length at most <i>d</i>, and
(ii) arbitrary real-valued non-decreasing functions on ...
more >>>
For (1,+k)-branching programs and read-k-times branching
programs syntactic and nonsyntactic variants can be distinguished. The
nonsyntactic variants correspond in a natural way to sequential
computations with restrictions on reading the input while lower bound
proofs are easier or only known for the syntactic variants. In this
paper it is shown ...
more >>>
The superposition (or composition) problem is a problem of
representation of a function $f$ by a superposition of "simpler" (in a
different meanings) set $\Omega$ of functions. In terms of circuits
theory this means a possibility of computing $f$ by a finite circuit
with 1 fan-out gates $\Omega$ of functions. ...
more >>>
We obtain the first non-trivial time-space tradeoff lower bound for
functions f:{0,1}^n ->{0,1} on general branching programs by exhibiting a
Boolean function f that requires exponential size to be computed by any
branching program of length cn, for some constant c>1. We also give the first
separation result between the ...
more >>>
Linear Transformed Ordered Binary Decision Diagrams (LTOBDDs) have
been suggested as a generalization of OBDDs for the representation and
manipulation of Boolean functions. Instead of variables as in the
case of OBDDs parities of variables may be tested at the nodes of an
LTOBDD. By this extension it is ...
more >>>
We survey some of the recent results on the complexity of recognizing
n-dimensional linear arrangements and convex polyhedra by randomized
algebraic decision trees. We give also a number of concrete applications
of these results. In particular, we derive first nontrivial, in fact
quadratic, ...
more >>>
A regular $(1,+k)$-branching program ($(1,+k)$-ReBP) is an
ordinary branching program with the following restrictions: (i)
along every consistent path at most $k$ variables are tested more
than once, (ii) for each node $v$ on all paths from the source to
$v$ the same set $X(v)\subseteq X$ of variables is ...
more >>>
Ordered binary decision diagrams (OBDDs) are nowadays the
most common dynamic data structure or representation type
for Boolean functions. Among the many areas of application
are verification, model checking, and computer aided design.
For many functions it is easy to estimate the OBDD ...
more >>>
We consider the problem of scheduling permanent jobs on related machines
in an on-line fashion. We design a new algorithm that achieves the
competitive ratio of $3+\sqrt{8}\approx 5.828$ for the deterministic
version, and $3.31/\ln 2.155 \approx 4.311$ for its randomized variant,
improving the previous competitive ratios ...
more >>>
We prove the first time-space lower bound tradeoffs for randomized
computation of decision problems. The bounds hold even in the
case that the computation is allowed to have arbitrary probability
of error on a small fraction of inputs. Our techniques are an
extension of those used by Ajtai in his ...
more >>>
We prove super-linear lower bounds for the number of edges
in constant depth circuits with $n$ inputs and up to $n$ outputs.
Our lower bounds are proved for all types of constant depth
circuits, e.g., constant depth arithmetic circuits, constant depth
threshold circuits ...
more >>>
A simple extension of standard neural network models is introduced that
provides a model for neural computations that involve both firing rates and
firing correlations. Such extension appears to be useful since it has been
shown that firing correlations play a significant computational role in
many biological neural systems. Standard ...
more >>>
In this paper the computational power of a new type of gate is studied:
winner-take-all gates. This work is motivated by the fact that the cost
of implementing a winner-take-all gate in analog VLSI is about the same
as that of implementing a threshold gate.
We show that ... more >>>
We show that the k-CSP problem over a finite Abelian group G
cannot be approximated within |G|^{k-O(sqrt{k})}-epsilon, for
any constant epsilon>0, unless P=NP. This lower bound matches
well with the best known upper bound, |G|^{k-1}, of Serna,
Trevisan and Xhafa. The proof uses a combination of PCP
techniques---most notably a ...
more >>>
One of the great challenges of complexity theory is the problem of
analyzing the dependence of the complexity of Boolean functions on the
resources nondeterminism and randomness. So far, this problem could be
solved only for very few models of computation. For so-called
partitioned binary decision diagrams, which are a ...
more >>>
This paper deals with the number of monochromatic combinatorial
rectangles required to approximate a Boolean function on a constant
fraction of all inputs, where each rectangle may be defined with
respect to its own partition of the input variables. The main result
of the paper is that the number of ...
more >>>
The general asymmetric (and metric) TSP is known to be approximable
only to within an O(log n) factor, and is also known to be
approximable within a constant factor as soon as the metric is
bounded. In this paper we study the asymmetric and symmetric TSP
problems with bounded metrics ...
more >>>
We give a polynomial time approximation scheme (PTAS) for dense
instances of the NEAREST CODEWORD problem.
We consider the following optimization problem:
given a system of m linear equations in n variables over a certain field,
a feasible solution is any assignment of values to the variables, and the
minimized objective function is the number of equations that are not
satisfied. For ...
more >>>
We consider bounded occurrence (degree) instances of a minimum
constraint satisfaction problem MIN-LIN2 and a MIN-BISECTION problem for
graphs. MIN-LIN2 is an optimization problem for a given system of linear
equations mod 2 to construct a solution that satisfies the minimum number
of them. E3-OCC-MIN-E3-LIN2 ...
more >>>
It is known that large fragments of the class of dense
Minimum Constraint Satisfaction (MIN-CSP) problems do not have
polynomial time approximation schemes (PTASs) contrary to their
Maximum Constraint Satisfaction analogs. In this paper we prove,
somewhat surprisingly, that the minimum satisfaction of dense
instances of kSAT-formulas, ...
more >>>
We propose an information-theoretic approach to proving lower
bounds on the size of branching programs. The argument is based on
Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during the various
stages of computation. The uncertainty is measured by the average
more >>>
We extend the lower bound techniques of [Fortnow], to the
unbounded-error probabilistic model. A key step in the argument
is a generalization of Nepomnjascii's theorem from the Boolean
setting to the arithmetic setting. This generalization is made
possible, due to the recent discovery of logspace-uniform TC^0
more >>>
We present some of the recent results on computational complexity
of approximating bounded degree combinatorial optimization problems. In
particular, we present the best up to now known explicit nonapproximability
bounds on the very small degree optimization problems which are of
particular importance on the intermediate stages ...
more >>>
We show that recognizing the $K_3$-freeness and $K_4$-freeness of
graphs is hard, respectively, for two-player nondeterministic
communication protocols with exponentially many partitions and for
nondeterministic (syntactic) read-$s$ times branching programs.
The key ingradient is a generalization of a coloring lemma, due to
Papadimitriou and Sipser, which says that for every ...
more >>>
This paper studies the existence of efficient (small size)
amplifiers for proving explicit inaproximability results for bounded degree
and bounded occurrence combinatorial optimization problems, and gives
an explicit construction for such amplifiers. We use this construction
also later to improve the currently best known approximation lower bounds
more >>>
We prove lower bounds on the number of product gates in bilinear
and quadratic circuits that
compute the product of two $n \times n$ matrices over finite fields.
In particular we obtain the following results:
1. We show that the number of product gates in any bilinear
(or quadratic) ...
more >>>
We study k-partition communication protocols, an extension
of the standard two-party best-partition model to k input partitions.
The main results are as follows.
1. A strong explicit hierarchy on the degree of
non-obliviousness is established by proving that,
using k+1 partitions instead of k may decrease
the communication complexity from ...
more >>>
Representations of boolean functions as polynomials (over rings) have
been used to establish lower bounds in complexity theory. Such
representations were used to great effect by Smolensky, who
established that MOD q \notin AC^0[MOD p] (for distinct primes p, q)
by representing AC^0[MOD p] functions as low-degree multilinear
polynomials over ...
more >>>
Branching programs are a well-established computation model
for Boolean functions, especially read-once branching programs
have been studied intensively. Exponential lower bounds for
deterministic and nondeterministic read-once branching programs
are known for a long time. On the other hand, the problem of
proving superpolynomial lower bounds ...
more >>>
The boolean circuit complexity classes
AC^0 \subseteq AC^0[m] \subseteq TC^0 \subseteq NC^1 have been studied
intensely. Other than NC^1, they are defined by constant-depth
circuits of polynomial size and unbounded fan-in over some set of
allowed gates. One reason for interest in these classes is that they
contain the ...
more >>>
We present a new efficient sampling method for approximating
r-dimensional Maximum Constraint Satisfaction Problems, MAX-rCSP, on
n variables up to an additive error \epsilon n^r.We prove a new
general paradigm in that it suffices, for a given set of constraints,
to pick a small uniformly random ...
more >>>
We present a new lower bound technique for two types of restricted
Branching Programs (BPs), namely for read-once BPs (BP1s) with
restricted amount of nondeterminism and for (1,+k)-BPs. For this
technique, we introduce the notion of (strictly) k-wise l-mixed
Boolean functions, which generalizes the concept of l-mixedness ...
more >>>
We prove a lower bound of $\Omega(m^2 \log m)$ for the size of
any arithmetic circuit for the product of two matrices,
over the real or complex numbers, as long as the circuit doesn't
use products with field elements of absolute value larger than 1
(where $m \times m$ is ...
more >>>
We prove upper and lower bounds on the power of quantum and stochastic
branching programs of bounded width. We show any NC^1 language can
be accepted exactly by a width-2 quantum branching program of
polynomial length, in contrast to the classical case where width 5 is
necessary unless \NC^1=\ACC. ...
more >>>
Branching programs are a well-established computation
model for boolean functions, especially read-once
branching programs (BP1s) have been studied intensively.
A very simple function $f$ in $n^2$ variables is
exhibited such that both the function $f$ and its negation
$\neg f$ can be computed by $\Sigma^3_p$-circuits,
the ...
more >>>
We prove exponential lower bounds on the length of 2-query
locally decodable codes. Goldreich et al. recently proved such bounds
for the special case of linear locally decodable codes.
Our proof shows that a 2-query locally decodable code can be decoded
with only 1 quantum query, and then ...
more >>>
We consider the problem of testing bipartiteness in the adjacency
matrix model. The best known algorithm, due to Alon and Krivelevich,
distinguishes between bipartite graphs and graphs that are
$\epsilon$-far from bipartite using $O((1/\epsilon^2)polylog(1/epsilon)$
queries. We show that this is optimal for non-adaptive algorithms,
up to the ...
more >>>
We revisit the oft-neglected 'recursive Fourier sampling' (RFS) problem, introduced by Bernstein and Vazirani to prove an oracle separation between BPP and BQP. We show that the known quantum algorithm for RFS is essentially optimal, despite its seemingly wasteful need to uncompute information. This implies that, to place BQP outside ... more >>>
We improve a number of approximation lower bounds for
bounded occurrence optimization problems like MAX-2SAT,
E2-LIN-2, Maximum Independent Set and Maximum-3D-Matching.
We study approximation hardness and satisfiability of bounded
occurrence uniform instances of SAT. Among other things, we prove
the inapproximability for SAT instances in which every clause has
exactly 3 literals and each variable occurs exactly 4 times,
and display an explicit ...
more >>>
We present a novel technique, based on the Jensen-Shannon divergence
from information theory, to prove lower bounds on the query complexity
of sampling algorithms that approximate functions over arbitrary
domain and range. Unlike previous methods, our technique does not
use a reduction from a binary decision problem, but rather ...
more >>>
A source is compressible if we can efficiently compute short
descriptions of strings in the support and efficiently
recover the strings from the descriptions. In this paper, we
present a technique for proving lower bounds on
compressibility in an oracle setting, which yields the
following results:
- We ...
more >>>
An arithmetic formula is multi-linear if the polynomial computed
by each of its sub-formulas is multi-linear. We prove that any
multi-linear arithmetic formula for the permanent or the
determinant of an $n \times n$ matrix is of size super-polynomial
in $n$.
We prove the first lower bound for restricted read-once parity branching
programs with unlimited parity nondeterminism where for each input the
variables may be tested according to several orderings.
Proving a superpolynomial lower bound for read-once parity branching
programs is still a challenging open problem. The following variant ...
more >>>
We consider the approximate nearest neighbour search problem on the
Hamming Cube $\b^d$. We show that a randomised cell probe algorithm that
uses polynomial storage and word size $d^{O(1)}$ requires a worst case
query time of $\Omega(\log\log d/\log\log\log d)$. The approximation
factor may be as loose as $2^{\log^{1-\eta}d}$ for any ...
more >>>
We show that any 1-round 2-server Private Information
Retrieval Protocol where the answers are 1-bit long must ask questions
that are at least $n-2$ bits long, which is nearly equal to the known
$n-1$ upper bound. This improves upon the approximately $0.25n$ lower
bound of Kerenidis and de Wolf while ...
more >>>
Let $\tau(k)$ be the minimum number of arithmetic operations
required to build the integer $k \in \N$ from the constant 1.
A sequence $x_k$ is said to be ``easy to compute'' if
there exists a polynomial $p$ such that $\tau(x_k) \leq p(\log k)$
for all $k \geq ...
more >>>
In 1977 Valiant proposed a graph theoretical method for proving lower
bounds on algebraic circuits with gates computing linear functions.
He used this method to reduce the problem of proving
lower bounds on circuits with linear gates to to proving lower bounds
on the rigidity of a matrix, a ...
more >>>
DPLL (for Davis, Putnam, Logemann, and Loveland) algorithms form the largest family of contemporary algorithms for SAT (the propositional satisfiability problem) and are widely used in applications. The recursion trees of DPLL algorithm executions on unsatisfiable formulas are equivalent to tree-like resolution proofs. Therefore, lower bounds for tree-like resolution (which ... more >>>
An arithmetic circuit or formula is multilinear if the polynomial
computed at each of its wires is multilinear.
We give an explicit example for a polynomial $f(x_1,...,x_n)$,
with coefficients in $\{0,1\}$, such that over any field:
1) $f$ can be computed by a polynomial-size multilinear circuit
of depth $O(\log^2 ...
more >>>
A large body of work studies the complexity of selecting the
$j$-th largest element in an arbitrary set of $n$ elements (a.k.a.
the select$(j)$ operation). In this work, we study the
complexity of select in data that is partially structured by
an initial preprocessing stage and in a data structure ...
more >>>
We consider the minimal number of AND and OR gates in monotone
circuits for quadratic boolean functions, i.e. disjunctions of
length-$2$ monomials. The single level conjecture claims that
monotone single level circuits, i.e. circuits which have only one
level of AND gates, for quadratic functions ...
more >>>
Consider a homogeneous polynomial $p(z_1,...,z_n)$ of degree $n$ in $n$ complex variables .
Assume that this polynomial satisfies the property : \\
$|p(z_1,...,z_n)| \geq \prod_{1 \leq i \leq n} Re(z_i)$ on the domain $\{(z_1,...,z_n) : Re(z_i) \geq 0 , 1 \leq i \leq n \}$ . \\
We prove that ... more >>>
In this paper we propose the study of a new model of restricted
branching programs which we call incremental branching programs.
This is in line with the program proposed by Cook in 1974 as an
approach for separating the class of problems solvable in logarithmic
space from problems solvable ...
more >>>
We construct an explicit polynomial $f(x_1,...,x_n)$, with
coefficients in ${0,1}$, such that the size of any syntactically
multilinear arithmetic circuit computing $f$ is at least
$\Omega( n^{4/3} / log^2(n) )$. The lower bound holds over any field.
How much can randomness help computation? Motivated by this general question and by volume computation, one of the few instances where randomness provably helps, we analyze a notion of dispersion and connect it to asymptotic convex geometry. We obtain a nearly quadratic lower bound on the complexity of randomized volume ... more >>>
We demonstrate a family of propositional formulas in conjunctive normal form
so that a formula of size $N$ requires size $2^{\Omega(\sqrt[7]{N/logN})}$
to refute using the tree-like OBDD refutation system of
Atserias, Kolaitis and Vardi
with respect to all variable orderings.
All known symbolic quantifier elimination algorithms for satisfiability
generate ...
more >>>
We prove the first time-space tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon the known time-space tradeoffs for Sat. Let m be a positive integer, and define MODm-Sat to be the problem of determining if a given Boolean formula has ... more >>>
We study the round complexity of various cryptographic protocols. Our main result is a tight lower bound on the round complexity of any fully-black-box construction of a statistically-hiding commitment scheme from one-way permutations, and even from trapdoor permutations. This lower bound matches the round complexity of the statistically-hiding commitment scheme ... more >>>
Ordered binary decision diagrams (OBDDs) are nowadays the most common
dynamic data structure or representation type for Boolean functions.
Among the many areas of application are verification, model checking,
computer aided design, relational algebra, and symbolic graph algorithms.
Although many even exponential lower bounds on the OBDD size of Boolean ...
more >>>
We describe a general method for testing whether a function on n input variables has a concise representation. The approach combines ideas from the junta test of Fischer et al. with ideas from learning theory, and yields property testers that make poly(s/epsilon) queries (independent of n) for Boolean function classes ... more >>>
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:
1. Noise-resistant. A syntactically multilinear ... more >>>
Linearity tests are randomized algorithms which have oracle access to the truth table of some function $f$,
which are supposed to distinguish between linear functions and functions which are far from linear. Linearity tests were first introduced by Blum, Luby and Rubenfeld in \cite{BLR93}, and were later used in the ...
more >>>
Ever since the fundamental work of Cook from 1971, satisfiability has been recognized as a central problem in computational complexity. It is widely believed to be intractable, and yet till recently even a linear-time, logarithmic-space algorithm for satisfiability was not ruled out. In 1997 Fortnow, building on earlier work by ... more >>>
Branching programs are computation models
measuring the space of (Turing machine) computations.
Read-once branching programs (BP1s) are the
most general model where each graph-theoretical path is the computation
path for some input. Exponential lower bounds on the size of read-once
branching programs are known since a long time. Nevertheless, there ...
more >>>
In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x_1,...,x_m) that cannot be computed by a depth d arithmetic circuit of small size then there exists ... more >>>
In this paper we give the first deterministic polynomial time algorithm for testing whether a {\em diagonal} depth-$3$ circuit $C(\arg{x}{n})$ (i.e. $C$ is a sum of powers of linear functions) is zero. We also prove an exponential lower bound showing that such a circuit will compute determinant or permanent only ... more >>>
A basic fact in linear algebra is that the image of the curve
$f(x)=(x^1,x^2,x^3,...,x^m)$, say over $C$, is not contained in any
$m-1$ dimensional affine subspace of $C^m$. In other words, the image
of $f$ is not contained in the image of any polynomial-mapping
$G:C^{m-1} ---> C^m$ ...
more >>>
We prove an exponential lower bound for the size of constant depth multilinear arithmetic circuits computing either the determinant or the permanent (a circuit is called multilinear, if the polynomial computed by each of its gates is multilinear). We also prove a super-polynomial separation between the size of product-depth $d$ ... more >>>
Recently, an extension of the standard data stream model has been introduced in which an algorithm can create and manipulate multiple read/write streams in addition to its input data stream. Like the data stream model, the most important parameter for this model is the amount of internal memory used by ... more >>>
We observe that many important computational problems in NC^1 share a simple self-reducibility property. We then show that, for any problem A having this self-reducibility property, A has polynomial size TC^0 circuits if and only if it has TC^0 circuits of size n^{1+\epsilon} for every \epsilon > 0 (counting the ... more >>>
Integer multiplication as one of the basic arithmetic functions has been
in the focus of several complexity theoretical investigations.
Ordered binary decision diagrams (OBDDs) are one of the most common
dynamic data structures for boolean functions.
Among the many areas of application are verification, model checking,
computer-aided design, relational algebra, ...
more >>>
Representations of Boolean functions by real polynomials
play an important role in complexity theory. Typically,
one is interested in the least degree of a polynomial
p(x_1,...,x_n) that approximates or sign-represents
a given Boolean function f(x_1,...,x_n). This article
surveys a new and growing body of work in communication
complexity that centers ...
more >>>
We prove n^Omega(1) lower bounds on the multiparty communication complexity of AC^0 functions in the number-on-forehead (NOF) model for up to Theta(log n) players. These are the first lower bounds for any AC^0 function for omega(loglog n) players. In particular we show that there are families of depth 3 read-once ... more >>>
We show that proving exponential lower bounds on depth four arithmetic
circuits imply exponential lower bounds for unrestricted depth arithmetic
circuits. In other words, for exponential sized circuits additional depth
beyond four does not help.
We then show that a complete black-box derandomization of Identity Testing problem for depth four ... more >>>
We prove an n^{Omega(1)}/2^{O(k)} lower bound on the randomized k-party communication complexity of read-once depth 4 AC^0 functions in the number-on-forehead (NOF) model for O(log n) players. These are the first non-trivial lower bounds for general NOF multiparty communication complexity for any AC^0 function for omega(log log n) players. For ... more >>>
It has been known since [Zyablov and Pinsker 1982] that a random $q$-ary code of rate $1-H_q(\rho)-\eps$ (where $0<\rho<1-1/q$, $\eps>0$ and $H_q(\cdot)$ is the $q$-ary entropy function) with high probability is a $(\rho,1/\eps)$-list decodable code. (That is, every Hamming ball of radius at most $\rho n$ has at most $1/\eps$ ... more >>>
The Gap-Hamming-Distance problem arose in the context of proving space
lower bounds for a number of key problems in the data stream model. In
this problem, Alice and Bob have to decide whether the Hamming distance
between their $n$-bit input strings is large (i.e., at least $n/2 +
\sqrt n$) ...
more >>>
Khrapchenko's classical lower bound $n^2$ on the formula size of the
parity function~$f$ can be interpreted as designing a suitable
measure of subrectangles of the combinatorial rectangle
$f^{-1}(0)\times f^{-1}(1)$. Trying to generalize this approach we
arrived at the concept of \emph{convex measures}. We prove the
more >>>
Given a directed graph $G = (V,E)$ and an integer $k \geq 1$, a $k$-transitive-closure-spanner ($k$-TC-spanner) of $G$ is a directed graph $H = (V, E_H)$ that has (1) the same transitive-closure as $G$ and (2) diameter at most $k$. Transitive-closure spanners were introduced in \cite{tc-spanners-soda} as a common abstraction ... more >>>
We show several unconditional lower bounds for exponential time classes
against polynomial time classes with advice, including:
\begin{enumerate}
\item For any constant $c$, $\NEXP \not \subseteq \P^{\NP[n^c]}/n^c$
\item For any constant $c$, $\MAEXP \not \subseteq \MA/n^c$
\item $\BPEXP \not \subseteq \BPP/n^{o(1)}$
\end{enumerate}
It was previously unknown even whether $\NEXP \subseteq ... more >>>
The motivation for this paper is to study the complexity of constant-width arithmetic circuits. Our main results are the following.
1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized monotone circuit of width 2k but has no subexponential-sized monotone circuit ...
more >>>
Polynomial identity testing (PIT) is the problem of checking whether a given
arithmetic circuit is the zero circuit. PIT ranks as one of the most important
open problems in the intersection of algebra and computational complexity. In the last
few years, there has been an impressive progress on this ...
more >>>
The rigidity of a matrix A for target rank r is the minimum number of entries
of A that must be changed to ensure that the rank of the altered matrix is at
most r. Since its introduction by Valiant (1977), rigidity and similar
rank-robustness functions of matrices have found ...
more >>>
Locally testable codes (LTCs) are error-correcting codes for which membership, in the code, of a given word can be tested by examining it in very few locations. Most known constructions of locally testable codes are linear codes, and give error-correcting codes
whose duals have (superlinearly) {\em many} small weight ...
more >>>
This paper makes three main contributions to the theory of communication complexity and stream computation. First, we present new bounds on the information complexity of AUGMENTED-INDEX. In contrast to analogous results for INDEX by Jain, Radhakrishnan and Sen [J. ACM, 2009], we have to overcome the significant technical challenge that ... more >>>
We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege--yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in Buss ... more >>>
We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum ... more >>>
A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider (FOCS'07). In that framework the parameterized version of any proof system is not fpt-bounded for some technical reasons, but we remark that this question becomes much more interesting if we restrict ourselves to those parameterized contradictions ... more >>>
The results of Strassen and Raz show that good enough tensor rank lower bounds have implications for algebraic circuit/formula lower bounds.
We explore tensor rank lower and upper bounds, focusing on explicit tensors. For odd d, we construct field-independent explicit 0/1 tensors T:[n]^d->F with rank at least 2n^(floor(d/2))+n-Theta(d log n). ... more >>>
A Boolean function $f \colon \mathbb{F}^n_2 \rightarrow \mathbb{F}_2$ is called an affine disperser for sources of dimension $d$, if $f$ is not constant on any affine subspace of $\mathbb{F}^n_2$ of dimension at least $d$. Recently Ben-Sasson and Kopparty gave an explicit construction of an affine disperser for $d=o(n)$. The main ... more >>>
Locally decodable codes
are error correcting codes with the extra property that, in order
to retrieve the correct value of just one position of the input with
high probability, it is
sufficient to read a small number of
positions of the corresponding,
possibly corrupted ...
more >>>
This paper characterizes alternation trading based proofs that satisfiability is not in the time and space bounded class $\DTISP(n^c, n^\epsilon)$, for various values $c<2$ and $\epsilon<1$. We characterize exactly what can be proved in the $\epsilon=0$ case with currently known methods, and prove the conjecture of Williams that $c=2\cos(\pi/7)$ is ... more >>>
We study the communication complexity of evaluating functions when the input data is randomly allocated (according to some known distribution) amongst two or more players, possibly with information overlap. This naturally extends previously studied variable partition models such as the best-case and worst-case partition models. We aim to understand whether ... more >>>
In this paper we present a combinatorial approach for proving complexity lower bounds. We mainly focus on the following instantiation of it. Consider a pair of properties of $m$-edge regular hypergraphs. Suppose they are ``indistinguishable'' with respect to hypergraphs with $m-t$ edges, in the sense that every such hypergraph has ... more >>>
We prove the following results concerning the combinatorics of list decoding, motivated by the exponential gap between the known upper bound (of $O(1/\gamma)$) and lower bound (of $\Omega_p(\log (1/\gamma))$) for the list-size needed to decode up to radius $p$ with rate $\gamma$ away from capacity, i.e., $1-h(p)-\gamma$ (here $p\in (0,1/2)$ ... more >>>
There has been considerable interest lately in the complexity of distributions. Recently, Lovett and Viola (CCC 2011) showed that the statistical distance between a uniform distribution over a good code, and any distribution which can be efficiently sampled by a small bounded-depth AC0 circuit, is inverse-polynomially close to one. That ... more >>>
We explore the relationships between circuit complexity, the complexity of generating circuits, and circuit-analysis algorithms. Our results can be roughly divided into three parts:
1. Lower Bounds Against Medium-Uniform Circuits. Informally, a circuit class is ``medium uniform'' if it can be generated by an algorithmic process that is somewhat complex ... more >>>
We give an explicit function $h:\{0,1\}^n\to\{0,1\}$ such that any deMorgan formula of size $O(n^{2.499})$ agrees with $h$ on at most $\frac{1}{2} + \epsilon$ fraction of the inputs, where $\epsilon$ is exponentially small (i.e. $\epsilon = 2^{-n^{\Omega(1)}}$). Previous lower bounds for formula size were obtained for exact computation.
The same ... more >>>
We study the circuit complexity of linear transformations between Galois fields GF(2^{mn}) and their isomorphic composite fields GF((2^{m})^n). For such a transformation, we show a lower bound of \Omega(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between ... more >>>
During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems ... more >>>
We present a new framework for proving fully black-box
separations and lower bounds. We prove a general theorem that facilitates
the proofs of fully black-box lower bounds from a one-way function (OWF).
Loosely speaking, our theorem says that in order to prove that a fully black-box
construction does ...
more >>>
We consider time-space tradeoffs for exactly computing frequency
moments and order statistics over sliding windows.
Given an input of length $2n-1$, the task is to output the function of
each window of length $n$, giving $n$ outputs in total.
Computations over sliding windows are related to direct sum problems
except ...
more >>>
We prove tight size bounds on monotone switching networks for the NP-complete problem of
$k$-clique, and for an explicit monotone problem by analyzing a pyramid structure of height $h$ for
the P-complete problem of generation. This gives alternative proofs of the separations of m-NC
from m-P and of m-NC$^i$ from ...
more >>>
We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ...
more >>>
We show that, over $\mathbb{C}$, if an $n$-variate polynomial of degree $d = n^{O(1)}$ is computable by an arithmetic circuit of size $s$ (respectively by an algebraic branching program of size $s$) then it can also be computed by a depth three circuit (i.e. a $\Sigma \Pi \Sigma$-circuit) of size ... more >>>
We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results :
$\bullet$ As ... more >>>
The two-player pebble game of Dymond–Tompa is identified as a barrier for existing techniques to save space or to speed up parallel algorithms for evaluation problems.
Many combinatorial lower bounds to study L versus NL and NC versus P under different restricted settings scale in the same way as the ... more >>>
Local algorithms on graphs are algorithms that run in parallel on the nodes of a graph to compute some global structural feature of the graph. Such algorithms use only local information available at nodes to determine local aspects of the global structure, while also potentially using some randomness. Recent research ... more >>>
We give a function $h:\{0,1\}^n\to\{0,1\}$ such that every deMorgan formula of size $n^{3-o(1)}/r^2$ agrees with $h$ on at most a fraction of $\frac{1}{2}+2^{-\Omega(r)}$ of the inputs. This improves the previous average-case lower bound of Komargodski and Raz (STOC, 2013).
Our technical contributions include a theorem that shows that the ``expected ... more >>>
We study the class of homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuits, which are depth 4 homogenous circuits with top fanin bounded by $r$. We show that any homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuit computing the permanent of an $n\times n$ matrix must have size at least $\exp\left(n^{\Omega(1/r)}\right)$.
In a recent result, Gupta, Kamath, Kayal and ... more >>>
For a property $P$ and a sub-property $P'$, we say that $P$ is $P'$-partially testable with $q$ queries if there exists an algorithm that distinguishes, with high probability, inputs in $P'$ from inputs $\epsilon$-far from $P$ by using $q$ queries. There are natural properties that require many queries to test, ... more >>>
We consider arithmetic formulas consisting of alternating layers of addition $(+)$ and multiplication $(\times)$ gates such that the fanin of all the gates in any fixed layer is the same. Such a formula $\Phi$ which additionally has the property that its formal/syntactic degree is at most twice the (total) degree ... more >>>
We consider the problem of verifying the identity of a distribution: Given the description of a distribution over a discrete support $p=(p_1,p_2,\ldots,p_n)$, how many samples (independent draws) must one obtain from an unknown distribution, $q$, to distinguish, with high probability, the case that $p=q$ from the case that the total ... more >>>
So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. The ordered pathwidth of a proof is shown to be roughly the same as its formula space. Length-space lower bounds for R(k)-refutations ... more >>>
We draw two incomplete, biased maps of challenges in
computational complexity lower bounds. Our aim is to put
these challenges in perspective, and to present some
connections which do not seem widely known.
We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. In particular, we develop a randomized algorithm for the element distinctness problem whose time $T$ and space $S$ ... more >>>
In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of {\it depth reduction} developed in the works of Agrawal-Vinay [AV08], Koiran [Koi12] and Tavenas [Tav13], and the use of the shifted partial derivative complexity measure ... more >>>
We show that
derandomizing polynomial identity testing over an arbitrary finite
field implies that NEXP does not have polynomial size boolean
circuits. In other words, for any finite field F(q) of size q,
$PIT_q\in NSUBEXP\Rightarrow NEXP\not\subseteq P/poly$, where
$PIT_q$ is the polynomial identity testing problem over F(q), and
NSUBEXP is ...
more >>>
The paper [Harry Buhrman, Michal Koucky, Nikolay Vereshchagin. Randomized Individual Communication Complexity. IEEE Conference on Computational Complexity 2008: 321-331] considered communication complexity of the following problem. Alice has a binary string $x$ and Bob a binary string $y$, both of length $n$, and they want to compute or approximate
more >>>
In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.
Our results extend ... more >>>
Motivated by the fundamental lower bounds questions in proof complexity, we investigate the complexity of generating identities of matrix rings, and related problems. Specifically, for a field $\mathbb{F}$ let $A$ be a non-commutative (associative) $\mathbb{F}$-algebra (e.g., the algebra Mat$_d(\mathbb{F})\;$ of $d\times d$ matrices over $\mathbb{F}$). We say that a non-commutative ... more >>>
Circumscription is one of the main formalisms for non-monotonic reasoning. It uses reasoning with minimal models, the key idea being that minimal models have as few exceptions as possible. In this contribution we provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate ... more >>>
We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits computing an explicit polynomial in $VP$. Our results hold for the {\it Iterated Matrix Multiplication} polynomial - in particular we show that any homogeneous depth 4 circuit computing the $(1,1)$ entry in the product of $n$ ... more >>>
We introduce a new and very natural algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits ($VNP \neq VP$). As a ... more >>>
We extend the line of research initiated by Fortnow and Klivans \cite{FortnowKlivans09} that studies the relationship between efficient learning algorithms and circuit lower bounds. In \cite{FortnowKlivans09}, it was shown that if a Boolean circuit class $\mathcal{C}$ has an efficient \emph{deterministic} exact learning algorithm, (i.e. an algorithm that uses membership and ... more >>>
Locally testable codes (LTCs) of constant distance that allow the tester to make a linear number of queries have become the focus of attention recently, due to their elegant connections to hardness of approximation. In particular, the binary Reed-Muller code of block length $N$ and distance $d$ is known to ... more >>>
Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower ... more >>>
Network coding studies the capacity of networks to carry information, when internal nodes are allowed to actively encode information. It is known that for multi-cast networks, the network coding capacity can be achieved by linear codes. It is also known not to be true for general networks. The best separation ... more >>>
The communication complexity of many fundamental problems reduces greatly
when the communicating parties share randomness that is independent of the
inputs to the communication task. Natural communication processes (say between
humans) however often involve large amounts of shared correlations among the
communicating players, but rarely allow for perfect sharing of ...
more >>>
Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time $O(n^{2.3755})$. Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le Gall has led to an improved algorithm running in time $O(n^{2.3729})$. These algorithms are obtained by analyzing higher ... more >>>
A recent model for property testing of probability distributions enables tremendous savings in the sample complexity of testing algorithms, by allowing them to condition the sampling on subsets of the domain.
In particular, Canonne et al. showed that, in this setting, testing identity of an unknown distribution $D$ (i.e., ...
more >>>
Does the information complexity of a function equal its communication complexity? We examine whether any currently known techniques might be used to show a separation between the two notions. Recently, Ganor et al. provided such a separation in the distributional setting for a specific input distribution ?. We show that ... more >>>
$\mathrm{AC}^{0} \circ \mathrm{MOD}_2$ circuits are $\mathrm{AC}^{0}$ circuits augmented with a layer of parity gates just above the input layer. We study the $\mathrm{AC}^{0} \circ \mathrm{MOD}_2$ circuit lower bound for computing the Boolean Inner Product functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS 2014) have ... more >>>
A simulation of an interactive protocol entails the use of an interactive communication to produce the output of the protocol to within a fixed statistical distance $\epsilon$. Recent works in the TCS community have propagated that the information complexity of the protocol plays a central role in characterizing the minimum ... more >>>
In this paper, we show exponential lower bounds for the class of homogeneous depth-$5$ circuits over all small finite fields. More formally, we show that there is an explicit family $\{P_d : d \in N\}$ of polynomials in $VNP$, where $P_d$ is of degree $d$ in $n = d^{O(1)}$ variables, ... more >>>
Set cover, over a universe of size $n$, may be modelled as a
data-streaming problem, where the $m$ sets that comprise the instance
are to be read one by one. A semi-streaming algorithm is allowed only
$O(n \text{ poly}\{\log n, \log m\})$ space to process this ...
more >>>
An \emph{arithmetic circuit} is a directed acyclic graph in which the operations are $\{+,\times\}$.
In this paper, we exhibit several connections between learning algorithms for arithmetic circuits and other problems.
In particular, we show that:
\begin{enumerate}
\item Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower bounds.
Let $U_{k,N}$ denote the Boolean function which takes as input $k$ strings of $N$ bits each, representing $k$ numbers $a^{(1)},\dots,a^{(k)}$ in $\{0,1,\dots,2^{N}-1\}$, and outputs 1 if and only if $a^{(1)} + \cdots + a^{(k)} \geq 2^N.$ Let THR$_{t,n}$ denote a monotone unweighted threshold gate, i.e., the Boolean function which takes ... more >>>
We prove a general lower bound on the size of branching programs over any semiring of zero characteristic, including the (min,+) semiring. Using it, we show that the classical dynamic programming algorithm of Bellman, Ford and Moore for the shortest s-t path problem is optimal, if only Min and Sum ... more >>>
A general and long-standing belief in the proof complexity community asserts that there is a close connection between progress in lower bounds for Boolean circuits and progress in proof size lower bounds for strong propositional proof systems. Although there are famous examples where a transfer from ideas and techniques from ... more >>>
Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the ... more >>>
The groundbreaking paper `Short proofs are narrow - resolution made simple' by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in ... more >>>
We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following:
1. There exists an explicit $n$-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) ... more >>>
We consider Boolean circuits over the full binary basis. We prove a $(3+\frac{1}{86})n-o(n)$ lower bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser for sublinear dimension. This improves the $3n-o(n)$ bound of Norbert Blum (1984). The proof is based on the gate ... more >>>
In this paper we motivate the study of Boolean dispersers for quadratic varieties by showing that an explicit construction of such objects gives improved circuit lower bounds. An $(n,k,s)$-quadratic disperser is a function on $n$ variables that is not constant on any subset of $\mathbb{F}_2^n$ of size at least $s$ ... more >>>
In this short note, we show that the permanent is not complete for non-negative polynomials in $VNP_{\mathbb{R}}$ under monotone p-projections. In particular, we show that Hamilton Cycle polynomial and the cut polynomials are not monotone p-projections of the permanent. To prove this we introduce a new connection between monotone projections ... more >>>
Let $r \geq 1$ be an integer. Let us call a polynomial $f(x_1, x_2,\ldots, x_N) \in \mathbb{F}[\mathbf{x}]$ as a multi-$r$-ic polynomial if the degree of $f$ with respect to any variable is at most $r$ (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output ... more >>>
In recent years there has been a flurry of activity proving lower bounds for
homogeneous depth-4 arithmetic circuits [GKKS13, FLMS14, KLSS14, KS14c], which has brought us very close to statements that are known to imply VP $\neq$ VNP. It is a big question to go beyond homogeneity, and in ...
more >>>
We investigate two QBF resolution systems that use extension variables: weak extended Q-resolution, where the extension variables are quantified at the innermost level, and extended Q-resolution, where the extension variables can be placed inside the quantifier prefix. These systems have been considered previously by Jussila et al. '07 who ... more >>>
Recently Beyersdorff, Bonacina, and Chew (ITCS'16) introduced a natural class of Frege systems for quantified Boolean formulas (QBF) and showed strong lower bounds for restricted versions of these systems. Here we provide a comprehensive analysis of the new extended Frege system from Beyersdorff et al., denoted EF+$\forall$red, which is a ... more >>>
We prove that any algorithm for learning parities requires either a memory of quadratic size or an exponential number of samples. This proves a recent conjecture of Steinhardt, Valiant and Wager and shows that for some learning problems a large storage space is crucial.
More formally, in the problem of ... more >>>
Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the ... more >>>
Suppose Alice holds a uniformly random string $X \in \{0,1\}^N$ and Bob holds a noisy version $Y$ of $X$ where each bit of $X$ is flipped independently with probability $\epsilon \in [0,1/2]$. Alice and Bob would like to extract a common random string of min-entropy at least $k$. In this ... more >>>
We extend the recent hierarchy results of Rossman, Servedio and
Tan \cite{rst15} to any $d \leq \frac {c \log n}{\log {\log n}}$
for an explicit constant $c$.
To be more precise, we prove that for any such $d$ there is a function
$F_d$ that is computable by a read-once formula ...
more >>>
We say that a circuit $C$ over a field $F$ functionally computes an $n$-variate polynomial $P \in F[x_1, x_2, \ldots, x_n]$ if for every $x \in \{0,1\}^n$ we have that $C(x) = P(x)$. This is in contrast to {syntactically} computing $P$, when $C \equiv P$ as formal polynomials. In this ... more >>>
We prove that with high probability over the choice of a random graph $G$ from the Erd\H{o}s-R\'enyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of at least $n^{1/2-c(d/\log n)^{1/2}}$ for some constant $c>0$.
This yields a nearly tight ...
more >>>
Monotone span programs are a linear-algebraic model of computation which were introduced by Karchmer and Wigderson in 1993. They are known to be equivalent to linear secret sharing schemes, and have various applications in complexity theory and cryptography. Lower bounds for monotone span programs have been difficult to obtain because ... more >>>
We exhibit an $n$-node graph whose independent set polytope requires extended formulations of size exponential in $\Omega(n/\log n)$. Previously, no explicit examples of $n$-dimensional $0/1$-polytopes were known with extension complexity larger than exponential in $\Theta(\sqrt{n})$. Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit ... more >>>
We study projective dimension, a graph parameter (denoted by $pd(G)$ for a graph $G$), introduced by (Pudlak, Rodl 1992), who showed that proving lower bounds for $pd(G_f)$ for bipartite graphs $G_f$ associated with a Boolean function $f$ imply size lower bounds for branching programs computing $f$. Despite several attempts (Pudlak, ... more >>>
In the setting of non-commutative arithmetic computations, we define a class of circuits that gener-
alize algebraic branching programs (ABP). This model is called unambiguous because it captures the
polynomials in which all monomials are computed in a similar way (that is, all the parse trees are iso-
morphic).
We ...
more >>>
We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the ...
more >>>
The notion of online space complexity, introduced by Karp in 1967, quantifies the amount of states required to solve a given problem using an online algorithm,
represented by a machine which scans the input exactly once from left to right.
In this paper, we study alternating machines as introduced by ...
more >>>
We prove that for every $n$ and $1 < t < n$ any $t$-out-of-$n$ threshold secret sharing scheme for one-bit secrets requires share size $\log(t + 1)$. Our bound is tight when $t = n - 1$ and $n$ is a prime power. In 1990 Kilian and Nisan proved ... more >>>
In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that
1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.
2. $P_n$ can be computed by ... more >>>
We prove an essentially sharp $\tilde\Omega(n/k)$ lower bound on the $k$-round distributional complexity of the $k$-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson's $\tilde \Omega(n/k^2)$ lower bound. A key part of the proof is using triangular discrimination instead ... more >>>
We study the \emph{random resolution} refutation system defined in~[Buss et al. 2014]. This attempts to capture the notion of a resolution refutation that may make mistakes but is correct most of the time. By proving the equivalence of several different definitions, we show that this concept is robust. On the ... more >>>
We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>
In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function ... more >>>
Itsykson and Sokolov in 2014 introduced the class of DPLL($\oplus$) algorithms that solve Boolean satisfiability problem using the splitting by linear combinations of variables modulo 2. This class extends the class of DPLL algorithms that split by variables. DPLL($\oplus$) algorithms solve in polynomial time systems of linear equations modulo two ... more >>>
We develop an extension of recently developed methods for obtaining time-space tradeoff lower bounds for problems of learning from random test samples to handle the situation where the space of tests is signficantly smaller than the space of inputs, a class of learning problems that is not handled by prior ... more >>>
Let $\mathcal{F}$ be a finite alphabet and $\mathcal{D}$ be a finite set of distributions over $\mathcal{F}$. A Generalized Santha-Vazirani (GSV) source of type $(\mathcal{F}, \mathcal{D})$, introduced by Beigi, Etesami and Gohari (ICALP 2015, SICOMP 2017), is a random sequence $(F_1, \dots, F_n)$ in $\mathcal{F}^n$, where $F_i$ is a sample from ... more >>>
The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within $\mathrm{P}$. In this paper, we study the algebraic formula complexity of multiplying $d$ many $2\times 2$ matrices, denoted $\mathrm{IMM}_{d}$, and show ... more >>>
In recent years the explosion in the volumes of data being stored online has resulted in distributed storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. An $(n,r,h,a,q)$-LRC is a $q$-ary code, where encoding is as a ... more >>>
We prove that if every problem in $NP$ has $n^k$-size circuits for a fixed constant $k$, then for every $NP$-verifier and every yes-instance $x$ of length $n$ for that verifier, the verifier's search space has an $n^{O(k^3)}$-size witness circuit: a witness for $x$ that can be encoded with a circuit ... more >>>
Many dynamic programming algorithms are ``pure'' in that they only use min or max and addition operations in their recursion equations. The well known greedy algorithm of Kruskal solves the minimum weight spanning tree problem on $n$-vertex graphs using only $O(n^2\log n)$ operations. We prove that any pure DP algorithm ... more >>>
We study the size blow-up that is necessary to convert an algebraic circuit of product-depth $\Delta+1$ to one of product-depth $\Delta$ in the multilinear setting.
We show that for every positive $\Delta = \Delta(n) = o(\log n/\log \log n),$ there is an explicit multilinear polynomial $P^{(\Delta)}$ on $n$ variables that ... more >>>
We introduce a new model for testing graph properties which we call the \emph{rejection sampling model}. We show that testing bipartiteness of $n$-nodes graphs using rejection sampling queries requires complexity $\widetilde{\Omega}(n^2)$. Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions ... more >>>
For quantified Boolean formulas (QBF) there are two main different approaches to solving: QCDCL and expansion solving. In this paper we compare the underlying proof systems and show that expansion systems admit strictly shorter proofs than CDCL systems for formulas of bounded quantifier complexity, thus pointing towards potential advantages of ... more >>>
We develop general lower bound arguments for approximating tropical
(min,+) and (max,+) circuits, and use them to prove the
first non-trivial, even super-polynomial, lower bounds on the size
of such circuits approximating some explicit optimization
problems. In particular, these bounds show that the approximation
powers of pure dynamic programming algorithms ...
more >>>
We show that for several natural problems of interest, complexity lower bounds that are barely non-trivial imply super-polynomial or even exponential lower bounds in strong computational models. We term this phenomenon "hardness magnification". Our examples of hardness magnification include:
1. Let MCSP$[s]$ be the decision problem whose YES instances are ... more >>>
We consider Boolean circuits over $\{\lor,\land,\neg\}$ with negations applied only to input variables. To measure the ``amount of negation'' in such circuits, we introduce the concept of their ``negation width.'' In particular, a circuit computing a monotone Boolean function $f(x_1,\ldots,x_n)$ has negation width $w$ if no nonzero term produced (purely ... more >>>
We study the complexity of representing polynomials by arithmetic circuits in both the commutative and the non-commutative settings. Our approach goes through a precise understanding of the more restricted setting where multiplication is not associative, meaning that we distinguish $(xy)z$ from $x(yz)$.
Our first and main conceptual result is a ... more >>>
We study goodness-of-fit of discrete distributions in the distributed setting, where samples are divided between multiple users who can only release a limited amount of information about their samples due to various information constraints. Recently, a subset of the authors showed that having access to a common random seed (i.e., ... more >>>
We consider the celebrated radio network model for abstracting communication in wireless networks. In this model, in any round, each node in the network may broadcast a message to all its neighbors. However, a node is able to hear a message broadcast by a neighbor only if no collision occurred, ... more >>>
We consider the problem of outputting succinct encodings of lists of generators for invariant rings. Mulmuley conjectured that there are always polynomial sized such encodings for all invariant rings. We provide simple examples that disprove this conjecture (under standard complexity assumptions).
more >>>We prove an easy-witness lemma ($\ewl$) for unambiguous non-deterministic verfiers. We show that if $\utime(t)\subset\mathcal{C}$, then for every $L\in\utime(t)$, for every $\utime(t)$ verifier $V$ for $L$, and for every $x\in L$, there is a certificate $y$ satisfing $V(x,y)=1$, that can be encoded as a truth-table of a $\mathcal{C}$ circuit. Our ... more >>>
A covering code is a set of codewords with the property that the union of balls, suitably defined, around these codewords covers an entire space. Generally, the goal is to find the covering code with the minimum size codebook. While most prior work on covering codes has focused on the ... more >>>
In this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of $r$ (referred to as multi-$r$-ic circuits). The goal of this study is to make progress towards proving ... more >>>
The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates back to the 1940s and is an important problem in circuit design. Recently, Ikenmeyer et al. [J. ACM, 66:4 (2019), Article 25] have shown that the hazard-free circuit complexity of any Boolean function $f(x)$ is lower-bounded by the ... more >>>
For a size parameter $s\colon\mathbb{N}\to\mathbb{N}$, the Minimum Circuit Size Problem (denoted by ${\rm MCSP}[s(n)]$) is the problem of deciding whether the minimum circuit size of a given function $f \colon \{0,1\}^n \to \{0,1\}$ (represented by a string of length $N := 2^n$) is at most a threshold $s(n)$. A ... more >>>
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [Olaf Beyersdorff et al., 2020]), a refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together ... more >>>
We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games.
Using this game, we ... more >>>
Consider property testing on bounded degree graphs and let $\varepsilon > 0$ denote the proximity parameter. A remarkable theorem of Newman-Sohler (SICOMP 2013) asserts that all properties of planar graphs (more generally hyperfinite) are testable with query complexity only depending on $\varepsilon$. Recent advances in testing minor-freeness have proven that ... more >>>
Quantified conflict-driven clause learning (QCDCL) is one of the main approaches for solving quantified Boolean formulas (QBF). We formalise and investigate several versions of QCDCL that include cube learning and/or pure-literal elimination, and formally compare the resulting solving models via proof complexity techniques. Our results show that almost all of ... more >>>
We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-$d$ Sherali-Adams refutation of an unsatisfiable CNF formula $C$ if and only if there is an $\varepsilon > 0$ and a degree-$d$ conical junta $J$ such that $viol_C(x) - \varepsilon = J$, where $viol_C(x)$ counts ... more >>>
We prove that a modification of Andreev's function is not computable by $(3 + \alpha - \varepsilon) \log{n}$ depth De Morgan formula with $(2\alpha - \varepsilon)\log{n}$ layers of AND gates at the top for any $1/5 > \alpha > 0$ and any constant $\varepsilon > 0$. In order to do ... more >>>
We prove super-polynomial lower bounds on the size of propositional proof systems operating with constant-depth algebraic circuits over fields of zero characteristic. Specifically, we show that the subset-sum variant $\sum_{i,j,k,l\in[n]} z_{ijkl}x_ix_jx_kx_l-\beta = 0$, for Boolean variables, does not have polynomial-size IPS refutations where the refutations are multilinear and written as ... more >>>
We construct an explicit family of 3-XOR instances hard for $\Omega(n)$-levels of the Sum-of-Squares (SoS) semi-definite programming hierarchy. Not only is this the first explicit construction to beat brute force search (beyond low-order improvements (Tulsiani 2021, Pratt 2021)), combined with standard gap amplification techniques it also matches the (optimal) hardness ... more >>>
We make progress on understanding a lower bound technique that was recently used by the authors to prove the first superpolynomial constant-depth circuit lower bounds against algebraic circuits.
More specifically, our previous work applied the well-known partial derivative method in a new setting, that of 'lopsided' set-multilinear polynomials. A ... more >>>
A monotone Boolean $(\lor,\land)$ circuit $F$ computing a Boolean function $f$ is a read-$k$ circuit if the polynomial produced (purely syntactically) by the arithmetic $(+,\times)$ version of $F$ has the property that for every prime implicant of $f$, the polynomial contains a monomial with the same set of variables, each ... more >>>
In (ToCT’20) Kumar surprisingly proved that every polynomial can be approximated as a sum of a constant and a product of linear polynomials. In this work, we prove the converse of Kumar's result which ramifies in a surprising new formulation of Waring rank and border Waring rank. From this conclusion, ... more >>>
We continue the investigation on the relations of QCDCL and QBF resolution systems. In particular, we introduce QCDCL versions that tightly characterise QU-Resolution and (a slight variant of) long-distance Q-Resolution. We show that most QCDCL variants - parameterised by different policies for decisions, unit propagations and reductions -- lead to ... more >>>
We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing ... more >>>
A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for ... more >>>
A fundamental problem in circuit complexity is to find explicit functions that require large depth to compute. When considering the natural DeMorgan basis of $\{\text{OR},\text{AND}\}$, where negations incur no cost, the best known depth lower bounds for an explicit function in NP have the form $(3-o(1))\log_2 n$, established by H{\aa}stad ... more >>>
Let R_eps denote randomized query complexity for error probability eps, and R:=R_{1/3}. In this work we investigate whether a perfect composition theorem R(f o g^n)=Omega(R(f).R(g)) holds for a relation f in {0,1}^n * S and a total inner function g:{0,1}^m \to {0, 1}.
Let D^(prod) denote the maximum distributional query ... more >>>
Recently, the proof system MICE for the model counting problem #SAT was introduced by Fichte, Hecher and Roland (SAT’22). As demonstrated by Fichte et al., the system MICE can be used for proof logging for state-of-the-art #SAT solvers.
We perform a proof-complexity study of MICE. For this we first simplify ...
more >>>
We prove that random low-degree polynomials (over $\mathbb{F}_2$) are unbiased, in an extremely general sense. That is, we show that random low-degree polynomials are good randomness extractors for a wide class of distributions. Prior to our work, such results were only known for the small families of (1) uniform sources, ... more >>>
The propositional proof system resolution over parities (Res($\oplus$)) combines resolution and the linear algebra over GF(2). It is a challenging open question to prove a superpolynomial lower bound on the proof size in this system. For many years, superpolynomial lower bounds were known only in tree-like cases. Recently, Efremenko, Garlik, ... more >>>