Eric Allender, David Mix Barrington

The essential idea in the fast parallel computation of division and

related problems is that of Chinese remainder representation

(CRR) -- storing a number in the form of its residues modulo many

small primes. Integer division provides one of the few natural

examples of problems for which ...
more >>>

Eric Allender, David Mix Barrington, William Hesse

Integer division has been known to lie in P-uniform TC^0 since

the mid-1980's, and recently this was improved to DLOG-uniform

TC^0. At the time that the results in this paper were proved and

submitted for conference presentation, it was unknown whether division

lay in DLOGTIME-uniform TC^0 (also known as ...
more >>>

Eric Allender, Nikhil Balaji, Samir Datta

We present improved uniform TC$^0$ circuits for division, matrix powering, and related problems, where the improvement is in terms of ``majority depth'' (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in ... more >>>

Eric Allender, Nikhil Balaji, Samir Datta, Rameshwar Pratap

We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits

for division, matrix powering, and related problems, where the improvement is in terms of ...
more >>>