Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > NC0:
Reports tagged with NC0:
TR11-007 | 17th January 2011
Benny Applebaum

Pseudorandom Generators with Long Stretch and Low locality from Random Local One-Way Functions

Revisions: 3

We continue the study of pseudorandom generators (PRG) $G:\{0,1\}^n \rightarrow \{0,1\}^m$ in NC0. While it is known that such generators are likely to exist for the case of small sub-linear stretch $m=n+n^{1-\epsilon}$, it remains unclear whether achieving larger stretch such as $m=2n$ or even $m=n+n^2$ is possible. The existence of ... more >>>


TR11-126 | 17th September 2011
Benny Applebaum, Andrej Bogdanov, Alon Rosen

A Dichotomy for Local Small-Bias Generators

We consider pseudorandom generators in which each output bit depends on a constant number of input bits. Such generators have appealingly simple structure: they can be described by a sparse input-output dependency graph and a small predicate that is applied at each output. Following the works of Cryan and Miltersen ... more >>>


TR13-098 | 28th June 2013
Benny Applebaum, Yoni Moses

Locally Computable UOWHF with Linear Shrinkage

Revisions: 2

We study the problem of constructing locally computable Universal One-Way Hash Functions (UOWHFs) $H:\{0,1\}^n \rightarrow \{0,1\}^m$. A construction with constant \emph{output locality}, where every bit of the output depends only on a constant number of bits of the input, was established by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However, this ... more >>>


TR13-102 | 17th July 2013
Andreas Krebs, Nutan Limaye, Meena Mahajan, Karteek Sreenivasaiah

Small Depth Proof Systems

A proof system for a language $L$ is a function $f$ such that Range$(f)$ is exactly $L$. In this paper, we look at proofsystems from a circuit complexity point of view and study proof systems that are computationally very restricted. The restriction we study is: they can be computed by ... more >>>


TR15-027 | 25th February 2015
Benny Applebaum

Cryptographic Hardness of Random Local Functions -- Survey

Revisions: 1

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely, by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use \emph{random local functions} in which each ... more >>>


TR15-045 | 1st April 2015
Benny Applebaum, Yuval Ishai, Eyal Kushilevitz

Minimizing Locality of One-Way Functions via Semi-Private Randomized Encodings

Revisions: 1

A one-way function is $d$-local if each of its outputs depends on at most $d$ input bits. In (Applebaum, Ishai, and Kushilevitz, FOCS 2004) it was shown that, under relatively mild assumptions, there exist $4$-local one-way functions (OWFs). This result is not far from optimal as it is not hard ... more >>>


TR15-172 | 3rd November 2015
Benny Applebaum, Shachar Lovett

Algebraic Attacks against Random Local Functions and Their Countermeasures

Revisions: 1

Suppose that you have $n$ truly random bits $x=(x_1,\ldots,x_n)$ and you wish to use them to generate $m\gg n$ pseudorandom bits $y=(y_1,\ldots, y_m)$ using a local mapping, i.e., each $y_i$ should depend on at most $d=O(1)$ bits of $x$. In the polynomial regime of $m=n^s$, $s>1$, the only known solution, ... more >>>


TR16-152 | 27th September 2016
Oded Goldreich

Deconstructing 1-local expanders

Revisions: 1

Contemplating the recently announced 1-local expanders of Viola and Wigderson (ECCC, TR16-129, 2016), one may observe that weaker constructs are well know. For example, one may easily obtain a 4-regular $N$-vertex graph with spectral gap that is $\Omega(1/\log^2 N)$, and similarly a $O(1)$-regular $N$-vertex graph with spectral gap $1/\tildeO(\log N)$.
more >>>


TR24-180 | 13th November 2024
Daniel Kane, Anthony Ostuni, Kewen Wu

Locally Sampleable Uniform Symmetric Distributions

Revisions: 1

We characterize the power of constant-depth Boolean circuits in generating uniform symmetric distributions. Let $f\colon\{0,1\}^m\to\{0,1\}^n$ be a Boolean function where each output bit of $f$ depends only on $O(1)$ input bits. Assume the output distribution of $f$ on uniform input bits is close to a uniform distribution $\mathcal D$ with ... more >>>


TR25-183 | 18th November 2025
Daniel Kane, Anthony Ostuni, Kewen Wu

Symmetric Distributions from Shallow Circuits

We characterize the symmetric distributions that can be (approximately) generated by shallow Boolean circuits. More precisely, let $f\colon \{0,1\}^m \to \{0,1\}^n$ be a Boolean function where each output bit depends on at most $d$ input bits. Suppose the output distribution of $f$ evaluated on uniformly random input bits is close ... more >>>




ISSN 1433-8092 | Imprint