Fu Li, Iddo Tzameret

Motivated by the fundamental lower bounds questions in proof complexity, we investigate the complexity of generating identities of matrix rings, and related problems. Specifically, for a field $\mathbb{F}$ let $A$ be a non-commutative (associative) $\mathbb{F}$-algebra (e.g., the algebra Mat$_d(\mathbb{F})\;$ of $d\times d$ matrices over $\mathbb{F}$). We say that a non-commutative ... more >>>

Toniann Pitassi, Iddo Tzameret

We survey recent progress in the proof complexity of strong proof systems and its connection to algebraic circuit complexity, showing how the synergy between the two gives rise to new approaches to fundamental open questions, solutions to old problems, and new directions of research. In particular, we focus on tight ... more >>>

Michael Forbes, Amir Shpilka, Ben Lee Volk

We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich for boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike the boolean setting, there has been ... more >>>

Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>

Michael Forbes, Amir Shpilka

In this paper we study the complexity of constructing a hitting set for $\overline{VP}$, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given ... more >>>

Iddo Tzameret, Stephen Cook

Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over $GF(2)$ in Hrubes-Tzameret [SICOMP'15]. Specifically, we show that the multiplicativity of the determinant function and the ... more >>>

Mrinal Kumar, Rafael Mendes de Oliveira, Ramprasad Saptharishi

We show that any $n$-variate polynomial computable by a syntactically multilinear circuit of size $\mathop{poly}(n)$ can be computed by a depth-$4$ syntactically multilinear ($\Sigma\Pi\Sigma\Pi$) circuit of size at most $\exp\left({O\left(\sqrt{n\log n}\right)}\right)$. For degree $d = \omega(n/\log n)$, this improves upon the upper bound of $\exp\left({O(\sqrt{d}\log n)}\right)$ obtained by Tavenas (MFCS ... more >>>

Mrinal Kumar, Ramprasad Saptharishi, Noam Solomon

A hitting-set generator (HSG) is a polynomial map $Gen:\mathbb{F}^k \to \mathbb{F}^n$ such that for all $n$-variate polynomials $Q$ of small enough circuit size and degree, if $Q$ is non-zero, then $Q\circ Gen$ is non-zero. In this paper, we give a new construction of such a HSG assuming that we have ... more >>>