A Santha-Vazirani (SV) source is a sequence of random bits where the conditional distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha and Vazirani show that deterministic randomness extraction from these sources is impossible.
In this paper, we study the generalization of SV ...
more >>>
Let $\mathcal{F}$ be a finite alphabet and $\mathcal{D}$ be a finite set of distributions over $\mathcal{F}$. A Generalized Santha-Vazirani (GSV) source of type $(\mathcal{F}, \mathcal{D})$, introduced by Beigi, Etesami and Gohari (ICALP 2015, SICOMP 2017), is a random sequence $(F_1, \dots, F_n)$ in $\mathcal{F}^n$, where $F_i$ is a sample from ... more >>>
A Chor--Goldreich (CG) source [CG88] is a sequence of random variables $X = X_1 \circ \ldots \circ X_t$, each $X_i \sim \{0,1 \{^d$, such that each $X_i$ has $\delta d$ min-entropy for some constant $\delta > 0$, even conditioned on any fixing of $X_1 \circ \ldots \circ X_{i-1}$. We typically ... more >>>
While the existence of randomness extractors, both seeded and seedless, has been thoroughly studied for many sources of randomness, currently, very little is known regarding the existence of seedless condensers in many settings. Here, we prove several new results for seedless condensers in the context of three related classes of ... more >>>