Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #2 to TR22-103 | 20th March 2023 18:34

Almost Chor--Goldreich Sources and Adversarial Random Walks

RSS-Feed




Revision #2
Authors: Dean Doron, Dana Moshkovitz, Justin Oh, David Zuckerman
Accepted on: 20th March 2023 18:34
Downloads: 549
Keywords: 


Abstract:

A Chor--Goldreich (CG) source [CG88] is a sequence of random variables $X = X_1 \circ \ldots \circ X_t$, each $X_i \sim \{0,1 \{^d$, such that each $X_i$ has $\delta d$ min-entropy for some constant $\delta > 0$, even conditioned on any fixing of $X_1 \circ \ldots \circ X_{i-1}$. We typically think of $d$ as constant. We extend this notion in several ways, and most notably allow each $X_i$ to be only $\gamma$-close to having $\delta d$ min entropy.

Studying such almost CG sources allows us to achieve pseudorandomness results which were not known to hold even for standard CG sources, and even for the weaker model of Santha--Vazirani sources [SV86]. We construct a deterministic condenser that on input $X$, outputs a distribution which is close to having constant entropy gap, namely a distribution $Z \sim \{0,1 \}^m$ for $m \approx \delta dt$ with min-entropy $m-O(1)$.

Our new primitive readily implies fast simulation results:

* We can simulate $\mathbf{BPP}$ using almost CG sources with constant multiplicative slowdown.
* When the randomized algorithm has small failure probability, we can simulate it using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a ``one-shot'' simulation is needed.

Moreover, our framework is flexible enough to work even when the $X_i$-s only have Shannon entropy rather than min-entropy, and in some cases, even when a few $X_i$-s are completely damaged.

Our main technical contribution is a novel analysis of random walks which may be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to $X_1\circ \ldots \circ X_t$, accumulate most of the entropy in $X$.


Revision #1 to TR22-103 | 23rd November 2022 09:56

Almost Chor--Goldreich Sources and Adversarial Random Walks





Revision #1
Authors: Dean Doron, Dana Moshkovitz, Justin Oh, David Zuckerman
Accepted on: 23rd November 2022 09:56
Downloads: 281
Keywords: 


Abstract:

A Chor--Goldreich (CG) source [CG88] is a sequence of random variables $X = X_1 \circ \ldots \circ X_t$, each $X_i \sim \{0,1 \{^d$, such that each $X_i$ has $\delta d$ min-entropy for some constant $\delta > 0$, even conditioned on any fixing of $X_1 \circ \ldots \circ X_{i-1}$. We typically think of $d$ as constant. We extend this notion in several ways, and most notably allow each $X_i$ to be only $\gamma$-close to having $\delta d$ min entropy.

Studying such almost CG sources allows us to achieve pseudorandomness results which were not known to hold even for standard CG sources, and even for the weaker model of Santha--Vazirani sources [SV86]. We construct a deterministic condenser that on input $X$, outputs a distribution which is close to having constant entropy gap, namely a distribution $Z \sim \{0,1 \}^m$ for $m \approx \delta dt$ with min-entropy $m-O(1)$.

Our new primitive readily implies fast simulation results:

* We can simulate $\mathbf{BPP}$ using almost CG sources with constant multiplicative slowdown.
* When the randomized algorithm has small failure probability, we can simulate it using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a ``one-shot'' simulation is needed.

Moreover, our framework is flexible enough to work even when the $X_i$-s only have Shannon entropy rather than min-entropy, and in some cases, even when a few $X_i$-s are completely damaged.

Our main technical contribution is a novel analysis of random walks which may be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to $X_1\circ \ldots \circ X_t$, accumulate most of the entropy in $X$.



Changes to previous version:


Paper:

TR22-103 | 15th July 2022 22:28

Almost Chor--Goldreich Sources and Adversarial Random Walks


Abstract:

A Chor--Goldreich (CG) source [CG88] is a sequence of random variables $X = X_1 \circ \ldots \circ X_t$, each $X_i \sim \{0,1 \{^d$, such that each $X_i$ has $\delta d$ min-entropy for some constant $\delta > 0$, even conditioned on any fixing of $X_1 \circ \ldots \circ X_{i-1}$. We typically think of $d$ as constant. We extend this notion in several ways, and most notably allow each $X_i$ to be only $\gamma$-close to having $\delta d$ min entropy.

Studying such almost CG sources allows us to achieve pseudorandomness results which were not known to hold even for standard CG sources, and even for the weaker model of Santha--Vazirani sources [SV86]. We construct a deterministic condenser that on input $X$, outputs a distribution which is close to having constant entropy gap, namely a distribution $Z \sim \{0,1 \}^m$ for $m \approx \delta dt$ with min-entropy $m-O(1)$.

Our new primitive readily implies fast simulation results:

* We can simulate $\mathbf{BPP}$ using almost CG sources with constant multiplicative slowdown.
* When the randomized algorithm has small failure probability, we can simulate it using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a ``one-shot'' simulation is needed.

Moreover, our framework is flexible enough to work even when the $X_i$-s only have Shannon entropy rather than min-entropy, and in some cases, even when a few $X_i$-s are completely damaged.

Our main technical contribution is a novel analysis of random walks which may be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to $X_1\circ \ldots \circ X_t$, accumulate most of the entropy in $X$.



ISSN 1433-8092 | Imprint