Irit Dinur, Yotam Dikstein, Yuval Filmus, Prahladh Harsha

We initiate the study of Boolean function analysis on high-dimensional expanders. We describe an analog of the Fourier expansion and of the Fourier levels on simplicial complexes, and generalize the FKN theorem to high-dimensional expanders.

Our results demonstrate that a high-dimensional expanding complex X can sometimes serve as a sparse ... more >>>

Tali Kaufman, David Mass

In this work we show a general reduction from high dimensional complexes to their links based on the spectral properties of the links. We use this reduction to show that if a certain property is testable in the links, then it is also testable in the complex. In particular, we ... more >>>

Yotam Dikstein, Irit Dinur

We introduce a framework of layered subsets, and give a sufficient condition for when a set system supports an agreement test. Agreement testing is a certain type of property testing that generalizes PCP tests such as the plane vs. plane test.

Previous work has shown that high dimensional expansion ... more >>>

Roy Gotlib, Tali Kaufman

In this work, using methods from high dimensional expansion, we show that the property of $k$-direct-sum is testable for odd values of $k$ . Previous work of Kaufman and Lubotzky could inherently deal only with the case that $k$ is even, using a reduction to linearity testing.

Interestingly, our work ...
more >>>

Irit Dinur, Roy Meshulam

We study the stability of covers of simplicial complexes. Given a map f:Y?X that satisfies almost all of the local conditions of being a cover, is it close to being a genuine cover of X? Complexes X for which this holds are called cover-stable. We show that this is equivalent ... more >>>

Yotam Dikstein, Irit Dinur, Prahladh Harsha, Noga Ron-Zewi

Locally testable codes (LTC) are error-correcting codes that have a local tester which can distinguish valid codewords from words that are far from all codewords, by probing a given word only at a very small (sublinear, typically constant) number of locations. Such codes form the combinatorial backbone of PCPs. ...
more >>>

Irit Dinur, Yuval Filmus, Prahladh Harsha, Madhur Tulsiani

We construct an explicit family of 3XOR instances which is hard for Omega(sqrt(log n)) levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in deterministic polynomial time.

Our construction is based on the high-dimensional expanders devised by Lubotzky, ...
more >>>

Max Hopkins, Tali Kaufman, Shachar Lovett

Higher order random walks (HD-walks) on high dimensional expanders have played a crucial role in a number of recent breakthroughs in theoretical computer science, perhaps most famously in the recent resolution of the Mihail-Vazirani conjecture (Anari et al. STOC 2019), which focuses on HD-walks on one-sided local-spectral expanders. In this ... more >>>

Tom Gur, Noam Lifshitz, Siqi Liu

We prove hypercontractive inequalities on high dimensional expanders. As in the settings of the p-biased hypercube, the symmetric group, and the Grassmann scheme, our inequalities are effective for global functions, which are functions that are not significantly affected by a restriction of a small set of coordinates. As applications, we ... more >>>

Mitali Bafna, Max Hopkins, Tali Kaufman, Shachar Lovett

Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the $p$-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of ... more >>>

Max Hopkins, Ting-Chun Lin

We construct an explicit family of 3-XOR instances hard for $\Omega(n)$-levels of the Sum-of-Squares (SoS) semi-definite programming hierarchy. Not only is this the first explicit construction to beat brute force search (beyond low-order improvements (Tulsiani 2021, Pratt 2021)), combined with standard gap amplification techniques it also matches the (optimal) hardness ... more >>>

Yotam Dikstein, Irit Dinur

We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of $SL_n(F_q)$. The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and ... more >>>

Itay Cohen, Roy Roth, Amnon Ta-Shma

More than twenty years ago, Capalbo, Reingold, Vadhan and Wigderson gave the first (and up to date only) explicit construction of a bipartite expander with almost full combinatorial expansion. The construction incorporates zig-zag ideas together with extractor technology, and is rather complicated. We give an alternative construction that builds upon ... more >>>

Mitali Bafna, Dor Minzer

A $d$-dimensional simplicial complex $X$ is said to support a direct product tester if any locally consistent function defined on its $k$-faces (where $k\ll d$) necessarily come from a function over its vertices. More precisely, a direct product tester has a distribution $\mu$ over pairs of $k$-faces $(A,A')$, and given ... more >>>