We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken, Mittmann and Saxena (Information and Computing, 2013), and exploited by them, and Agrawal, Saha, Saptharishi and Saxena (Journal of Computing, 2016) to design algebraic independence based identity tests ... more >>>
We show that the GCD of two univariate polynomials can be computed by (piece-wise) algebraic circuits of constant depth and polynomial size over any sufficiently large field, regardless of the characteristic. This extends a recent result of Andrews \& Wigderson who showed such an upper bound over fields of zero ... more >>>