We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to the best of our knowledge, the first known family of codes that can be decoded (and encoded) in nearly linear time, even as they ... more >>>
Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with nearly-optimal parameters. However, existing constructions of seeded extractors with short seed length and large output length run in time $\Omega(n \log(1/\varepsilon))$ and often slower, where $n$ is the input ... more >>>
A recent work of Goyal, Harsha, Kumar and Shankar gave nearly linear time algorithms for the list decoding of Folded Reed-Solomon codes (FRS) and univariate multiplicity codes up to list decoding capacity in their natural setting of parameters. A curious aspect of this work was that unlike most list decoding ... more >>>