Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with nearly-optimal parameters. However, existing constructions of seeded extractors with short seed length and large output length run in time $\Omega(n \log(1/\varepsilon))$ and often slower, where $n$ is the input source length and $\varepsilon$ is the error of the extractor. Since cryptographic applications of extractors require $\varepsilon$ to be small, the resulting runtime makes these extractors unusable in practice.
Motivated by this, we explore constructions of strong seeded extractors with short seeds computable in nearly-linear time $O(n \log^c n)$, for any error $\varepsilon$. We show that an appropriate combination of modern condensers and classical approaches for constructing seeded extractors for high min-entropy sources yields strong extractors for $n$-bit sources with any min-entropy $k$ and any target error $\varepsilon$ with seed length $d=O(\log(n/\varepsilon))$ and output length $m=(1-\eta)k$ for an arbitrarily small constant $\eta>0$, running in nearly-linear time, after a reasonable one-time preprocessing step (finding a primitive element of $\mathbb{F}_q$ with $q=\mathrm{poly}(n/\varepsilon)$ a power of $2$) that is only required when $k0$ and $\log^*$ the iterated logarithm, and which can be implemented in time $\mathrm{polylog}(n/\varepsilon)$ under mild conditions on $q$. As a second contribution, we give an instantiation of Trevisan's extractor that can be evaluated in \emph{truly} linear time in the RAM model, as long as the number of output bits is at most $\frac{n}{\log(1/\varepsilon)\mathrm{polylog}(n)}$. Previous fast implementations of Trevisan’s extractor ran in $\widetilde{O}(n)$ time in this setting. In particular, these extractors directly yield privacy amplification protocols with the same time complexity and output length, and communication complexity equal to their seed length.