Next
Let $\mathcal{G}$ be a $k$-player game with value $<1$, whose query distribution is such that no marginal on $k-1$ players admits a non-trivial Abelian embedding. We show that for every $n\geq N$, the value of the $n$-fold parallel repetition of $\mathcal{G}$ is $$ \text{val}(\mathcal{G}^{\otimes n}) \leq \frac{1}{\underbrace{\log\log\cdots\log}_{C\text{ times}} n}, $$ ... more >>>
Exact and point-wise approximating representations of Boolean functions by real polynomials have been of great interest in the theory of computing. We focus on the study of sparsity of such representations. Our results include the following:
- We show that for every total Boolean function, its exact and approximate sparsity ... more >>>
Modular composition is the problem of computing the coefficient vector of the polynomial $f(g(x)) \bmod h(x)$, given as input the coefficient vectors of univariate polynomials $f$, $g$, and $h$ over an underlying field $\mathbb{F}$. While this problem is known to be solvable in nearly-linear time over finite fields due to ... more >>>