We propose a simple variant of the INW pseudo-random generator, where blocks have varying lengths, and prove it gives the same parameters as the more complicated construction of Armoni's PRG. This shows there is no need for the specialized PRGs of Nisan and Zuckerman and Armoni, and they can be ... more >>>
We prove that hashing $n$ balls into $n$ bins via a random matrix over $GF(2)$ yields expected maximum load $O(\log n / \log \log n)$. This matches the expected maximum load of a fully random function and resolves an open question posed by Alon, Dietzfelbinger, Miltersen, Petrank, and Tardos (STOC ... more >>>
We study the arithmetic complexity of hitting set generators, which are pseudorandom objects used for derandomization of the polynomial identity testing problem. We give new explicit constructions of hitting set generators whose outputs are computable in $VNC^0$, i.e., can be computed by arithmetic formulas of constant size. Unconditionally, we construct ... more >>>