
PreviousNext
The *algebrization barrier*, proposed by Aaronson and Wigderson (STOC '08, ToCT '09), captures the limitations of many complexity-theoretic techniques based on arithmetization. Notably, several circuit lower bounds that overcome the relativization barrier (Buhrman--Fortnow--Thierauf, CCC '98; Vinodchandran, TCS '05; Santhanam, STOC '07, SICOMP '09) remain subject to the algebrization barrier.
... more >>>We characterize the symmetric distributions that can be (approximately) generated by shallow Boolean circuits. More precisely, let $f\colon \{0,1\}^m \to \{0,1\}^n$ be a Boolean function where each output bit depends on at most $d$ input bits. Suppose the output distribution of $f$ evaluated on uniformly random input bits is close ... more >>>
The original proof of the PCP Theorem composes a Reed-Muller-based PCP with itself, and then composes the resulting PCP with a Hadamard-based PCP [Arora, Lund, Motwani, Sudan and Szegedy ({\em JACM}, 1998)].
Hence, that proof applies a (general) proof composition result twice.
(Dinur's alternative proof consists of logarithmically many gap ...
more >>>
PreviousNext