
PreviousNext
The complexity of bilinear maps (equivalently, of $3$-mode tensors) has been studied extensively, most notably in the context of matrix multiplication. While circuit complexity and tensor rank coincide asymptotically for $3$-mode tensors, this correspondence breaks down for $d \geq 4$ modes. As a result, the complexity of $d$-mode tensors for ... more >>>
We show that Hilbert's Nullstellensatz, the problem of deciding if a system of multivariate polynomial equations has a solution in the algebraic closure of the underlying field, lies in the counting hierarchy. More generally, we show that the number of solutions to a system of equations can be computed in ... more >>>
Unlike in TFNP, for which there is an abundance of problems capturing natural existence principles which are incomparable (in the black-box setting), Kleinberg et al. [KKMP21] observed that many of the natural problems considered so far in the second level of the total function polynomial hierarchy (TF$\Sigma_2$) reduce to the ... more >>>
PreviousNext