Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

RSS-FeedNext next

TR18-174 | 19th October 2018
Anastasiya Chistopolskaya, Vladimir Podolskii

Parity Decision Tree Complexity is Greater Than Granularity

We prove a new lower bound on the parity decision tree complexity $D_{\oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $D_{\oplus}(f)\geq k+1$.

This lower bound is ... more >>>

TR18-173 | 17th October 2018
Eric Allender, Rahul Ilango, Neekon Vafa

The Non-Hardness of Approximating Circuit Size

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions, and is provably not hard under “local” reductions computable in TIME($n^{0.49}$). The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) ... more >>>

TR18-172 | 11th October 2018
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan

Building Strategies into QBF Proofs

Strategy extraction is of paramount importance for quantified Boolean formulas (QBF), both in solving and proof complexity. It extracts (counter)models for a QBF from a run of the solver resp. the proof of the QBF, thereby allowing to certify the solver's answer resp. establish soundness of the system. So far ... more >>>

Next next

ISSN 1433-8092 | Imprint