Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

RSS-FeedNext next

TR22-009 | 17th January 2022
C. Ramya, Anamay Tengse

On Finer Separations between Subclasses of Read-once Oblivious ABPs

Read-once Oblivious Algebraic Branching Programs (ROABPs) compute polynomials as products of univariate polynomials that have matrices as coefficients. In an attempt to understand the landscape of algebraic complexity classes surrounding ROABPs, we study classes of ROABPs based on the algebraic structure of these coefficient matrices. We study connections between polynomials ... more >>>

TR22-008 | 14th January 2022
Gil Cohen, Dean Doron, Ori Sberlo

Approximating Large Powers of Stochastic Matrices in Small Space

We give a deterministic space-efficient algorithm for approximating powers of stochastic matrices. On input a $w \times w$ stochastic matrix $A$, our algorithm approximates $A^{n}$ in space $\widetilde{O}(\log n + \sqrt{\log n}\cdot \log w)$ to within high accuracy. This improves upon the seminal work by Saks and Zhou (FOCS'95), that ... more >>>

TR22-007 | 14th January 2022
Halley Goldberg, Valentine Kabanets

A Simpler Proof of the Worst-Case to Average-Case Reduction for Polynomial Hierarchy via Symmetry of Information

We give a simplified proof of Hirahara's STOC'21 result showing that $DistPH \subseteq AvgP$ would imply $PH \subseteq DTIME[2^{O(n/\log n)}]$. The argument relies on a proof of the new result: Symmetry of Information for time-bounded Kolmogorov complexity under the assumption that $NP$ is easy on average, which is interesting in ... more >>>

Next next

ISSN 1433-8092 | Imprint