We define the marginal information of a communication protocol, and use it to prove XOR lemmas for communication complexity. We show that if every $C$-bit protocol has bounded advantage for computing a Boolean function $f$, then every $\tilde \Omega(C \sqrt{n})$-bit protocol has advantage $\exp(-\Omega(n))$ for computing the $n$-fold xor $f^{\oplus ... more >>>
We study the Range Avoidance Problem (Avoid), in which the input is an expanding circuit $C : \{0,1\}^n \to \{0,1\}^{n+1}$, and the goal is to find a $y \in \{0,1\}^{n+1}$ that is not in the image of $C$. We are interested in the randomized complexity of this problem, i.e., in ... more >>>
The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the ``threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function ... more >>>