Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

RSS-FeedNext next

TR19-140 | 7th October 2019
Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, Avi Wigderson

Search problems in algebraic complexity, GCT, and hardness of generator for invariant rings.

We consider the problem of outputting succinct encodings of lists of generators for invariant rings. Mulmuley conjectured that there are always polynomial sized such encodings for all invariant rings. We provide simple examples that disprove this conjecture (under standard complexity assumptions).

more >>>

TR19-139 | 8th October 2019
Irit Dinur, Konstantin Golubev

Direct sum testing - the general case

A function f:[n_1] x ... x [n_d]-->F is a direct sum if it is of the form f(a_1,...,a_d) = f_1(a_1) + ... + f_d (a_d) (mod 2) for some d functions f_i:[n_i]-->F_i for all i=1,...,d. We present a 4-query test which distinguishes between direct sums and functions that are ... more >>>

TR19-138 | 6th October 2019
Srikanth Srinivasan, Utkarsh Tripathi, S Venkitesh

On the Probabilistic Degrees of Symmetric Boolean functions

The probabilistic degree of a Boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$ is defined to be the smallest $d$ such that there is a random polynomial $\mathbf{P}$ of degree at most $d$ that agrees with $f$ at each point with high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees ... more >>>

Next next

ISSN 1433-8092 | Imprint