
PreviousNext
Nisan and Szegedy conjectured that block sensitivity is at most
polynomial in sensitivity for any Boolean function.
Until a recent breakthrough of Huang, the conjecture had been
wide open in the general case,
and was proved only for a few special classes
of Boolean functions.
Huang's result implies that block ...
more >>>
A binary code $\text{Enc}:\{0,1\}^k \rightarrow \{0,1\}^n$ is $(\frac{1}{2}-\varepsilon,L)$-list decodable if for every $w \in \{0,1\}^n$, there exists a set $\text{List}(w)$ of size at most $L$, containing all messages $m \in \{0,1\}^k$ such that the relative Hamming distance between $\text{Enc}(m)$ and $w$ is at most $\frac{1}{2}-\varepsilon$.
A $q$-query local list-decoder is ...
more >>>
We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$ and randomized parity decision tree complexity $\Theta(n)$. This improves upon the ... more >>>
PreviousNext