Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-172 | 28th November 2019
Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, Srikanth Srinivasan

Schur Polynomials do not have small formulas if the Determinant doesn't!

Schur Polynomials are families of symmetric polynomials that have been
classically studied in Combinatorics and Algebra alike. They play a central
role in the study of Symmetric functions, in Representation theory [Sta99], in
Schubert calculus [LM10] as well as in Enumerative combinatorics [Gas96, Sta84,
Sta99]. In recent years, they have ... more >>>


TR19-171 | 27th November 2019
Oded Goldreich

Improved bounds on the AN-complexity of multilinear functions

Revisions: 5


We consider arithmetic circuits with arbitrary large (multi-linear) gates for computing multi-linear functions. An adequate complexity measure for such circuits is the maximum between the arity of the gates and their number.
This model and the corresponding complexity measure were introduced by Goldreich and Wigderson (ECCC, TR13-043, 2013), ... more >>>


TR19-170 | 27th November 2019
Prerona Chatterjee, Mrinal Kumar, Adrian She, Ben Lee Volk

A Quadratic Lower Bound for Algebraic Branching Programs

Revisions: 3

We show that any Algebraic Branching Program (ABP) computing the polynomial $\sum_{i = 1}^n x_i^n$ has at least $\Omega(n^2)$ vertices. This improves upon the lower bound of $\Omega(n\log n)$, which follows from the classical result of Baur and Strassen [Str73, BS83], and extends the results by Kumar [Kum19], which showed ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint