Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-170 | 27th November 2019
Prerona Chatterjee, Mrinal Kumar, Adrian She, Ben Lee Volk

A Quadratic Lower Bound for Algebraic Branching Programs

Revisions: 3

We show that any Algebraic Branching Program (ABP) computing the polynomial $\sum_{i = 1}^n x_i^n$ has at least $\Omega(n^2)$ vertices. This improves upon the lower bound of $\Omega(n\log n)$, which follows from the classical result of Baur and Strassen [Str73, BS83], and extends the results by Kumar [Kum19], which showed ... more >>>


TR19-169 | 21st November 2019
Lijie Chen, Ron Rothblum, Roei Tell, Eylon Yogev

On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds

Revisions: 2

The Exponential-Time Hypothesis ($ETH$) is a strengthening of the $\mathcal{P} \neq \mathcal{NP}$ conjecture, stating that $3\text{-}SAT$ on $n$ variables cannot be solved in time $2^{\epsilon\cdot n}$, for some $\epsilon>0$. In recent years, analogous hypotheses that are ``exponentially-strong'' forms of other classical complexity conjectures (such as $\mathcal{NP}\not\subseteq\mathcal{BPP}$ or $co\text{-}\mathcal{NP}\not\subseteq \mathcal{NP}$) have ... more >>>


TR19-168 | 20th November 2019
Igor Carboni Oliveira, Lijie Chen, Shuichi Hirahara, Ján Pich, Ninad Rajgopal, Rahul Santhanam

Beyond Natural Proofs: Hardness Magnification and Locality

Hardness magnification reduces major complexity separations (such as $EXP \not\subseteq NC^1$) to proving lower bounds for some natural problem $Q$ against weak circuit models. Several recent works [OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19a] have established results of this form. In the most intriguing cases, the required lower bound is ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint