Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR19-098 | 20th July 2019
Jayadev Acharya, Clement Canonne, Yanjun Han, Ziteng Sun, Himanshu Tyagi

Domain Compression and its Application to Randomness-Optimal Distributed Goodness-of-Fit

We study goodness-of-fit of discrete distributions in the distributed setting, where samples are divided between multiple users who can only release a limited amount of information about their samples due to various information constraints. Recently, a subset of the authors showed that having access to a common random seed (i.e., ... more >>>


TR19-097 | 4th July 2019
Jacobo Toran, Florian Wörz

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Revisions: 1 , Comments: 1

We show a new connection between the space measure in tree-like resolution and the reversible pebble game in graphs. Using this connection we provide several formula classes for which there is a logarithmic factor separation between the space complexity measure in tree-like and general resolution. We show that these separations ... more >>>


TR19-096 | 23rd July 2019
Aditya Potukuchi

On the $\text{AC}^0[\oplus]$ complexity of Andreev's Problem

Andreev's Problem asks the following: Given an integer $d$ and a subset of $S \subseteq \mathbb{F}_q \times \mathbb{F}_q$, is there a polynomial $y = p(x)$ of degree at most $d$ such that for every $a \in \mathbb{F}_q$, $(a,p(a)) \in S$? We show an $\text{AC}^0[\oplus]$ lower bound for this problem.

... more >>>


previous PreviousNext next


ISSN 1433-8092 | Imprint