We study uniquely decodable codes and list decodable codes in the high-noise regime, specifically codes that are uniquely decodable from $\frac{1-\varepsilon}{2}$ fraction of errors and list decodable from $1-\varepsilon$ fraction of errors. We present several improved explicit constructions that achieve near-optimal rates, as well as efficient or even linear-time decoding ... more >>>
We investigate the computational complexity of estimating the trace of quantum state powers $\text{tr}(\rho^q)$ for an $n$-qubit mixed quantum state $\rho$, given its state-preparation circuit of size $\text{poly}(n)$. This quantity is closely related to and often interchangeable with the Tsallis entropy $\text{S}_q(\rho) = \frac{1-\text{tr}(\rho^q)}{q-1}$, where $q = 1$ corresponds to ... more >>>
We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>