Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-118 | 9th July 2024
Amnon Ta-Shma, Ron Zadiario

The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Numerous works have studied the probability that a length $t-1$ random walk on an expander is confined to a given rectangle $S_1 \times \ldots \times S_t$, providing both upper and lower bounds for this probability.
However, when the densities of the sets $S_i$ may depend on the walk length (e.g., ... more >>>


TR24-117 | 12th June 2024
Ludmila Glinskih, Artur Riazanov

Partial Minimum Branching Program Size Problem is ETH-hard

We show that assuming the Exponential Time Hypothesis, the Partial Minimum Branching Program Size Problem (MBPSP*) requires superpolynomial time. This result also applies to the partial minimization problems for many interesting subclasses of branching programs, such as read-$k$ branching programs and OBDDs.

Combining these results with our recent result (Glinskih ... more >>>


TR24-116 | 6th July 2024
Lijie Chen, Ron D. Rothblum, Roei Tell

Fiat-Shamir in the Plain Model from Derandomization (Or: Do Efficient Algorithms Believe that NP = PSPACE?)

Revisions: 1

A classical challenge in complexity theory and cryptography is to simulate interactive proof systems by non-interactive proof systems. In this work we leverage approaches from recent works in derandomization to address this challenge, focusing on non-interactive simulations that are sound against uniform adversarial algorithms.

Our results concern fundamental questions in ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint