Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR13-177 | 10th December 2013
Eric Allender, Nikhil Balaji, Samir Datta

Low-depth Uniform Threshold Circuits and the Bit-Complexity of Straight Line Programs

Revisions: 1

We present improved uniform TC$^0$ circuits for division, matrix powering, and related problems, where the improvement is in terms of ``majority depth'' (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in ... more >>>


TR13-176 | 8th December 2013
Daniel Kane, Osamu Watanabe

A Short Implicant of CNFs with Relatively Many Satisfying Assignments

Revisions: 1 , Comments: 1

Consider any Boolean function $F(X_1,\ldots,X_N)$ that has more than $2^{-N^{d}}$ satisfying assignments and that can be expressed by a CNF formula with at most $N^{1+e}$ clauses for some $d>0$ and $e>0$ such that $d+e$ is less than $1$ (*). Then how many variables do we need to fix in order ... more >>>


TR13-175 | 6th December 2013
Venkatesan Guruswami, Chaoping Xing

Hitting Sets for Low-Degree Polynomials with Optimal Density

Revisions: 1

We give a length-efficient puncturing of Reed-Muller codes which preserves its distance properties. Formally, for the Reed-Muller code encoding $n$-variate degree-$d$ polynomials over ${\mathbb F}_q$ with $q \ge \Omega(d/\delta)$, we present an explicit (multi)-set $S \subseteq {\mathbb F}_q^n$ of size $N=\mathrm{poly}(n^d/\delta)$ such that every nonzero polynomial vanishes on at most ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint