Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR13-098 | 28th June 2013
Benny Applebaum, Yoni Moses

Locally Computable UOWHF with Linear Shrinkage

Revisions: 2

We study the problem of constructing locally computable Universal One-Way Hash Functions (UOWHFs) $H:\{0,1\}^n \rightarrow \{0,1\}^m$. A construction with constant \emph{output locality}, where every bit of the output depends only on a constant number of bits of the input, was established by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However, this ... more >>>


TR13-097 | 25th June 2013
Mikolas Janota, Joao Marques-Silva

On Propositional QBF Expansions and Q-Resolution

Over the years, proof systems for propositional satisfiability (SAT)
have been extensively studied. Recently, proof systems for
quantified Boolean formulas (QBFs) have also been gaining attention.
Q-resolution is a calculus enabling producing proofs from
DPLL-based QBF solvers. While DPLL has become a dominating technique
for SAT, QBF has been tackled ... more >>>


TR13-096 | 25th June 2013
Dana Ron, Rocco Servedio

Exponentially improved algorithms and lower bounds for testing signed majorities

A signed majority function is a linear threshold function $f : \{+1,1\}^n \to \{+1,1\}$ of the form
$f(x)={\rm sign}(\sum_{i=1}^n \sigma_i x_i)$ where each $\sigma_i \in \{+1,-1\}.$ Signed majority functions are a highly symmetrical subclass of the class of all linear threshold functions, which are functions of the form ${\rm ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint