
PreviousNext
We study the complexity of locally list-decoding binary error correcting codes with good parameters (that are polynomially related to information theoretic bounds). We show that computing majority over $\Theta(1/\eps)$ bits is essentially equivalent to locally list-decoding binary codes from relative distance $1/2-\eps$ with list size $\poly(1/\eps)$. That is, a local-decoder ... more >>>
A basic goal in Property Testing is to identify a
minimal set of features that make a property testable.
For the case when the property to be tested is membership
in a binary linear error-correcting code, Alon et al.~\cite{AKKLR}
had conjectured that the presence of a {\em single} low weight
more >>>
We consider bounded depth circuits over an arbitrary field $K$. If the field $K$ is finite, then we allow arbitrary gates $K^n\to K$. For instance, in the case of field $GF(2)$ we allow any Boolean gates. If the field $K$ is infinite, then we allow only polinomials.
For every fixed ... more >>>
PreviousNext