
PreviousNext
In this work, we initiate the study of the space complexity of the Polynomial Identity Testing problem (PIT).
First, we observe that the majority of the existing (time-)efficient ``blackbox'' PIT algorithms already give rise to space-efficient ``whitebox'' algorithms for the respective classes of arithmetic formulas via a space-efficient ...
more >>>
We study extractors computable in uniform $\mathrm{AC}^0$ and uniform $\mathrm{NC}^1$.
For the $\mathrm{AC}^0$ setting, we give a construction such that for every $k \ge n/ \mathrm{poly} \log n, \eps \ge 2^{-\mathrm{poly} \log n}$, it can extract $(1-\gamma)k$ randomness from an $(n, k)$ source for an arbitrary constant ...
more >>>
In the Minmax Set Cover Reconfiguration problem, given a set system $\mathcal{F}$ over a universe and its two covers $\mathcal{C}^\mathrm{start}$ and $\mathcal{C}^\mathrm{goal}$ of size $k$, we wish to transform $\mathcal{C}^\mathrm{start}$ into $\mathcal{C}^\mathrm{goal}$ by repeatedly adding or removing a single set of $\mathcal{F}$ while covering the universe in any intermediate state. ... more >>>
PreviousNext