Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-164 | 5th November 2023
Shuo Wang, Guangxu Yang, Jiapeng Zhang

Communication Complexity of Set-Intersection Problems and Its Applications

Set-disjointness is one of the most fundamental and widely studied problems in the area of communication complexity. In this problem, each party $i$ receives a set $S_i\subseteq [N]$. The goal is to determine whether $\bigcap S_i$ is empty via communication between players. The decision version simply asks if the common ... more >>>


TR23-163 | 30th October 2023
Nikhil Balaji, Samir Datta

USSR is in P/poly

The Sum of Square Roots (SSR) problem is the following computational problem: Given positive integers $a_1, \dots, a_k$, and signs $\delta_1, \dots, \delta_k \in \{-1, 1\}$, check if $\sum_{i=1}^k \delta_i \sqrt{a_i} > 0$. The problem is known to have a polynomial time algorithm on the real RAM model of computation, ... more >>>


TR23-162 | 1st November 2023
Pravesh Kothari, Peter Manohar

An Exponential Lower Bound for Linear 3-Query Locally Correctable Codes

We prove that the blocklength $n$ of a linear $3$-query locally correctable code (LCC) $\mathcal{L} \colon \mathbb{F}^k \to \mathbb{F}^n$ with distance $\delta$ must be at least $n \geq 2^{\Omega\left(\left(\frac{\delta^2 k}{(|\mathbb{F}|-1)^2}\right)^{1/8}\right)}$. In particular, the blocklength of a linear $3$-query LCC with constant distance over any small field grows exponentially with $k$. ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint