
PreviousNext
It is well known that $\R^N$ has subspaces of dimension
proportional to $N$ on which the $\ell_1$ norm is equivalent to the
$\ell_2$ norm; however, no explicit constructions are known.
Extending earlier work by Artstein--Avidan and Milman, we prove that
such a subspace can be generated using $O(N)$ random bits.
A cycle cover of a graph is a set of cycles such that every vertex is
part of exactly one cycle. An L-cycle cover is a cycle cover in which
the length of every cycle is in the set L. The weight of a cycle cover
of an edge-weighted graph ...
more >>>
We continue a study initiated by Krajicek of
a Resolution-like proof system working with clauses of linear
inequalities, R(CP). For all proof systems of this kind
Krajicek proved an exponential lower bound that depends
on the maximal absolute value of coefficients in the given proof and
the maximal clause width.
PreviousNext