The Turing and many-one completeness notions for $\NP$ have been
previously separated under {\em measure}, {\em genericity}, and {\em
bi-immunity} hypotheses on NP. The proofs of all these results rely
on the existence of a language in NP with almost everywhere hardness.
In this paper we separate the same NP-completeness ... more >>>
We show necessary and sufficient conditions that
certain algebraic functions like the rank or the signature
of an integer matrix can be computed in GapL.
We initiate the study of quantifying the quantumness of
a quantum circuit by the number of gates that do not preserve
the computational basis, as a means to understand the nature
of quantum algorithmic speedups.
Intuitively, a reduction in the quantumness requires
an increase in the amount of classical computation, ...
more >>>