We continue the study of the degree of polynomials representing threshold functions modulo 6 initiated by Barrington, Beigel and Rudich. We use the framework established by the authors relating representations by symmetric polynomials to simultaneous protocols. We show that proving bounds on the degree of Threshold functions is equivalent to ... more >>>
We continue the study of the trade-off between the length of PCPs
and their query complexity, establishing the following main results
(which refer to proofs of satisfiability of circuits of size $n$):
We present PCPs of length $\exp(\tildeO(\log\log n)^2)\cdot n$
that can be verified by making $o(\log\log n)$ Boolean queries.
more >>>
We study the complexity of building
pseudorandom generators (PRGs) from hard functions.
We show that, starting from a function f : {0,1}^l -> {0,1} that
is mildly hard on average, i.e. every circuit of size 2^Omega(l)
fails to compute f on at least a 1/poly(l)
fraction of inputs, we can ...
more >>>