We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\Omega(d/\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\Omega(nd)$, if $d\leq n$, or $\Omega(nd \frac{\log ... more >>>
In this paper, we initiate study of the computational power of adaptive and non-adaptive monotone decision trees – decision trees where each query is a monotone function on the input bits. In the most general setting, the monotone decision tree height (or size) can be viewed as a measure of ... more >>>
A classic result of Nisan [SICOMP '91] states that the deterministic decision tree depth complexity of every total Boolean function is at most the cube of its randomized decision tree depth complexity. The question whether randomness helps in significantly reducing the size of decision trees appears not to have been ... more >>>