
PreviousNext
Many results in fine-grained complexity reveal intriguing consequences from solving various SAT problems even slightly faster than exhaustive search. We prove a ``self-improving'' (or ``bootstrapping'') theorem for Circuit-SAT, $\#$Circuit-SAT, and its fully-quantified version: solving one of these problems faster for ``large'' circuit sizes implies a significant speed-up for ``smaller'' circuit ... more >>>
We study the following question: what cryptographic assumptions are needed for obtaining constant-round computationally-sound argument systems? We focus on argument systems with almost-linear verification time for subclasses of $\mathbf{P}$, such as depth-bounded computations.
Kilian's celebrated work [STOC 1992] provides such 4-message arguments for $\mathbf{P}$ (actually, for $\mathbf{NP}$) using collision-resistant hash ...
more >>>
Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence of natural properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning algorithms in the sense of Valiant (Comm. ACM, 1984), for boolean functions in $\P/\poly$, under the uniform distribution and with membership queries. It is ... more >>>
PreviousNext