We study the polynomial equivalence problem for orbits of read-once arithmetic formulas (ROFs). Read-once formulas have received considerable attention in both algebraic and Boolean complexity and have served as a testbed for developing effective tools and techniques for analyzing circuits. Two $n$-variate polynomials $f, g \in \mathbb{F}[\mathbf{x}]$ are equivalent, denoted ... more >>>
We give the first polynomial-time *non-adaptive* proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for $s$-sparse polynomial over $n$ variables, makes $q=(s/\epsilon)^{\gamma(s,\epsilon)}\log n$ queries where $2.66\le \gamma(s,\epsilon)\le 6.922$ and runs in $\tilde O(n)\cdot poly(s,1/\epsilon)$ time. We also show that for any $\epsilon=1/s^{O(1)}$ any non-adaptive ... more >>>
The leading technical approach in uniform hardness-to-randomness in the last two decades faced several well-known barriers that caused results to rely on overly strong hardness assumptions, and yet still yield suboptimal conclusions.
In this work we show uniform hardness-to-randomness results that *simultaneously break through all of the known barriers*. Specifically, ... more >>>